VH+/VS+/VT+ - Precision worm gearboxes

The powerful V-Drive worm gears of the alpha Advanced Line offer flexible output shapes and countless application possibilities. With high-quality toothing and constant backlash, the gearboxes remain exceptionally efficient throughout their entire service life.

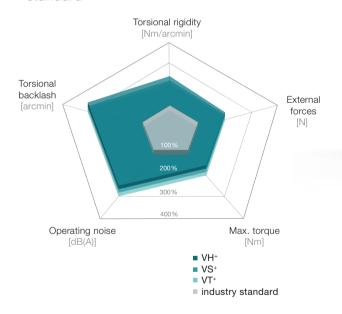
Product highlights

Max. torsional backlash [arcmin] ≤

≤ 3 (Standard) ≤ 2 (Reduced)

Constant, low torsional backlash

consistently high quality and high positioning accuracy guaranteed throughout its lifespan

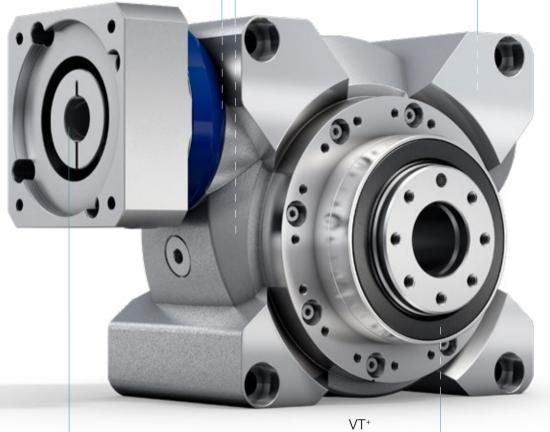

No stick-slip effect

owing to the enhanced hollow-flank teeth

Optimally sized output bearing for absorbing high axial and radial forces in cyclic or continuous operation

Hollow-flank teeth with high overload capacity owing to the low specific tooth pressure

V-Drive Advanced compared to the industry standard

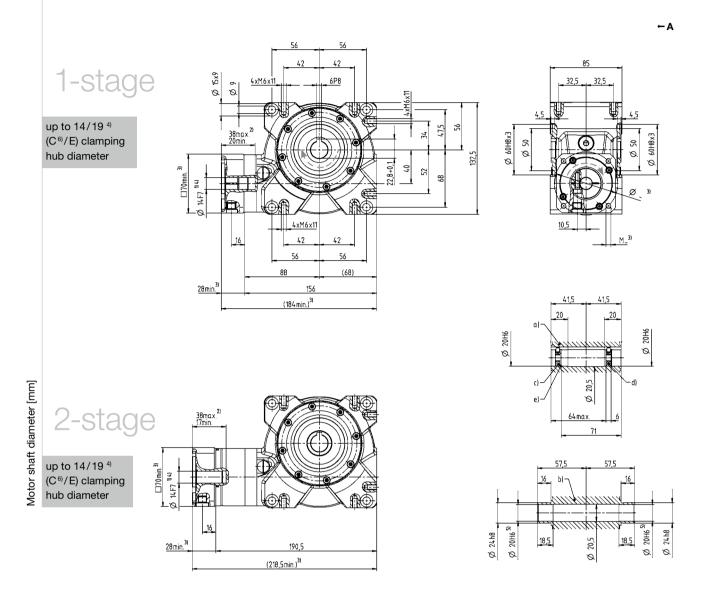


 $VT^{\scriptscriptstyle +}$ with integrated planetary input stage for higher ratios

Hollow-flank toothing: high accuracy of torsional backlash throughout the entire service life; High efficiency and extremely high power density

Radial shaft seal: very long service life; optimized for continous operation Input bearing: bearing package for absorbing axial and radial forces; very well suited for high input speeds

Metal bellows coupling: completely backlash-free; fatigue endurable and maintenance-free; easy to mount; integrated length compensation feature protects the motor Output bearing: high overload capacity for absorbing axial and radial forces



VH+ 040 MF 1-/2-stage

							1-st	age					:	2-stage	9		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b)			T _{2a}	Nm	74	82	98	101	106	98	98	82	98	106	98	106	98
(at n ₁ = 500 rpm)			* 2a	in.lb	655	726	867	894	938	867	867	726	867	938	867	938	867
Torque for constant backlash			T _{2Servo}	Nm	17	24	25	26	29	25	25	24	25	29	25	29	25
(over the lifetime)			2Servo	in.lb	150	212	221	230	257	221	221	212	221	257	221	257	221
Emergency stop torque a) b) (permitted 1000 times during the service life of the			T _{2Not}													134	122
(permittee 1000 times during the service life of the	gearb	DX)	21101	in.lb	1044	1115	1106	1142	1186	1080	1106	1115	1106	1186	1080	1186	1080
Permitted average input speed (at 20 °C ambient temperature) (a)			n _{1N}	Nm													
Max. input speed			n _{1Max}	rpm	655 726 867 894 938 867 726 867 938 938 90 88 82 73 67 86 88 86 71 65 738 748 7												
Mean no load running torque b)			_	Nm	0.8	0.7	0.6	0.5	0.4	0.4	0.4	0.2	0.2	0.4	0.4	0.3	0.2
(at n, = 3000 rpm and 20 °C gearbox temperature)			T ₀₁₂	in.lb	7.1	6.2	5.3	4.4	3.5	3.5	3.5	1.8	1.8	3.5	3.5	2.7	1.8
Max. backlash			j_t	Nm 74 82 98 101 106 98 98 82 98 106 98 106 in.lb 655 726 867 894 938 867 867 726 867 938 867 93 Nm 17 24 25 26 29 25 25 24 25 29 25 29 in.lb 150 212 221 230 257 221 221 221 257 221 25 Nm 118 126 125 129 134 122 126 126 134 122 13 in.lb 1044 1115 1106 1142 1186 1080 1106 1115 1106 1186 1080 118 rpm 4000 4000 4400<										≤ 3			
Tamaian al visialita bi			_	rpm 6000 Nm 0.8 0.7 0.6 0.5 0.4 0.4 0.2 0.2 0.4 0.4 0.9 in.lb 7.1 6.2 5.3 4.4 3.5 3.5 1.8 1.8 3.5 3.5 2 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 4.5 5 5 in.lb/arcmin 40 40 40 N 3000 10, 675 N 2400 10, 540 Nm 205 1814 % 93 90 88 82 73 67 86 88 86 71 65 7 h > 20000 5.6 5.6 5.6 5.6 5.6													
Torsional rigidity b)			C ₁₂₁	rpm													
Max. axial force ©			F														
Wax. axiai lorce			F _{2AMax}	In.lb													
Max. lateral force c)			F	N/m 118 126 125 129 134 122 125 126 125 134 122 134 122 125 136 125 134 122 134 in.lb 1106 1118 1080 11186 1080 1116 1115 1106 1186 1080 11186 rpm 4000 4000 4000 44000 44000 44000 44000 44000 44000													
Wax. lateral force			F _{2QMax}	in.lb													
Max. tilting moment			M _{2KMax}	rpm 4000 4400 rpm 6000 Nm 0.8 0.7 0.6 0.5 0.4 0.4 0.2 0.2 0.4 0.4 0.3 in.lb 7.1 6.2 5.3 4.4 3.5 3.5 3.5 1.8 1.8 3.5 3.5 2.7 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 4.5 5 5 5 675 7 8 8 8 7 1 6 7 7 7 8 8 8 7 1 6 7 7 8 8 8 7 1 6 7 1 1 1 1 1 1 1 </td <td></td> <td></td>													
max mang memeri			2KMax	rpm 4000 4400 rpm 6000 Nm 0.8 0.7 0.6 0.5 0.4 0.4 0.2 0.2 0.4 0.4 0.6 in.lb 7.1 6.2 5.3 4.4 3.5 3.5 1.8 1.8 3.5 3.5 2. arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 4.5 5 5 in.lb/arcmin 40 3000 40 Ib _t 675 86 8 86 71 65 7 N 2400 1814 1814 1814 9 93 90 88 82 73 67 86 88 86 71 65 7 h > 20000 5.6 1814 12.0 40													
Efficiency at full load (at n,= 500 rpm)			η	%	93	90	88	82	73	67	86	88	86	71	65	71	65
Service life			L _n	Nm													
Weight				in.lb 7.1 6.2 5.3 4.4 3.5 3.5 1.8 1.8 3.5 3.5 arcmin Standard \leq 3 / Reduced \leq 2 Standard \leq 4 / Reduced \leq 2 Nm/arcmin 4.5 5 in.lb/arcmin 40 N 3000 lb, 675 N 2400 lb, 540 Nm 2205 in.lb 1814 % 93 90 88 82 73 67 86 88 86 71 65 h > 20000 kg 5.6 lb_m 11.1 12.0 dB(A) \leq 54 \leq 58 °C -15 to +40 F 5 to 104 Lubricated for life													
(incl. standard adapter plate)			m	lb _m			11	.1						12.0			
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex*)			L _{PA}	dB(A)			≤	54						≤ 58			
				°C							+90						
Max. permitted housing temperature				F							194						
Ambient temperature				°C						-	15 to +4	0					
Ambient temperature				F							5 to 104						
Lubrication										Lubr	cated fo	or life					
Direction of rotation									In-	and out	put san	ne direc	tion				
Protection class											IP 65						
Shrink disc (Standard version)							,		,	SD	024x050	D S2		,			
Max. torque (without axial force)			T _{max}	Nm													
				kacm²	0.52	በ 38	0.34	0.32	0.32	0.31	0.25	0.28	0.24	0.23	0.19	0.18	0.18
Mass moment of inertia	С	14	J ₁					_				_			0.19	0.16	0.16
(relates to the drive) Clamping hub diameter [mm]															0.30	0.30	0.30
orambula um manierer [umi]	Е	19	J_{1}	10 ⁻³ in.lb.s ²	0.48	0.35	0.33	0.31	0.30	0.29	0.32	0.35	0.32	0.30	0.27	0.27	0.27
	1		I		0.10	0.00	0.00	1 5.5 1	0.00	1 5.25	U.U.L	1 5.55	0.02	1 5.55	U.L.	L 5.27	U.L.I

<sup>a) At max. 10 % F_{20Max}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures</sup>

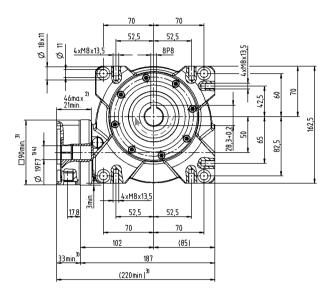
- a) Hollow shaft, keywayed
- b) Hollow shaft, smooth
- c) End disc for screw M6
- d) End disc as forcing washer for screw M8
- e) Locking ring DIN 472

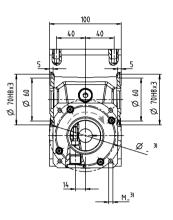
See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

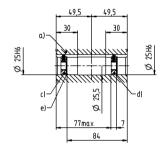
- 2) Min./Max. permissible motor shaft length.
- Longer motor shafts are adaptable, please contact us.

 3) The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Tolerance h6 for mounted shaft.
- 6) Standard clamping hub diameter

VH+ 050 MF 1-/2-stage

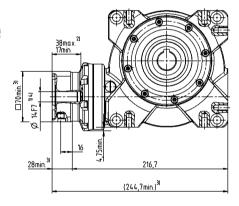

							1-st	age					:	2-stage	e					
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400			
Max. torque a) b)			T _{2a}	Nm	165	180	182	193	204	183	182	180	182	204	183	204	183			
(at n,= 500 rpm)			* 2a	in.lb	1460	1593	1611	1708	1805	1620	1611	1593	1611	1805	1620	1805	1620			
Torque for constant backlash			T _{2Servo}	Nm	54	71	74	81	90	74	74	71	74	90	74	90	74			
(over the lifetime)			2Servo														655			
Emergency stop torque ^{a) b)} (permitted 1000 times during the service life of the	gearb	ox)	T _{2Not}														236			
Permitted average input speed (at 20 °C ambient temperature) ®			n _{1N}	rpm	2000	2142			2010	2003	2142	2142	2142	3500	2000	2010	2003			
Max. input speed			n _{1Max}	Nm 165 180 182 193 204 183 182 180 182 204 183 2 in.lb 1460 1593 1611 1708 1805 1620 1611 1593 1611 1805 1620 11 Nm 54 71 74 81 90 74 74 71 74 90 74 74 in.lb 478 628 655 717 797 655 655 628 655 797 655 7 Nm 230 242 242 250 262 236 242 242 262 236 2 in.lb 2036 2142 2142 2213 2319 2089 2142 2142 2142 2319 2089 23 rpm 4000 3500																
Mean no load running torque b)			T	Nm	2.3	2.2	1.6	1.5	1.2	1.1	0.7	0.5	0.4	0.6	0.6	0.4	0.4			
(at n, = 3000 rpm and 20 °C gearbox temperature)			012	in.lb	20.4	19.5	14.2	13.3	10.6	9.7	6.2	4.4	3.5	5.3	5.3	3.5	3.5			
Max. backlash			j_t	Nm												≤ 3				
Torsional rigidity b)			C	Nm																
Total inglanty			U ₁₂₁	Nm																
Max. axial force ©			F	In.lb 2036 2142 2142 2213 2319 2089 2142 2142 2142 2319 2089 2089																
			ZAWAX	In.lb																
Max. lateral force c)			F _{2QMax}	Nm 230 242 242 250 262 236 242 in.lb 2036 2142 2142 2213 2319 2089 2142 rpm 4000 6000 Nm 2.3 2.2 1.6 1.5 1.2 1.1 0.7 in.lb 20.4 19.5 14.2 13.3 10.6 9.7 6.2 arcmin Standard ≤ 3 / Reduced ≤ 2 8 Nm/arcmin 71 71 71 71 72 8 855 Nm 3800 1129 855 855 855 855 855 855 862 72 64 84																
				'																
Max. tilting moment			M _{2KMax}	Nm																
Efficiency at full load			η		92	89	86	82	72	64		87	84	70	62	70	62			
Service life			L _h	h							> 20000)								
Weight			T ₀₁₂ Nm lin.b 2.3 2.2 1.6 1.5 1.2 1.1 0.7 0.5 0.4 0.6 0.0																	
(incl. standard adapter plate)			$ F_{2AMax} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex*)			L _{PA}	dB(A)							≤ 62			242 262 236 262 2142 2319 2089 2319 3500 0.4 0.6 0.6 0.4 3.5 5.3 5.3 3.5 Idard ≤ 4 / Reduced ≤ 3 84 70 62 70 8.7 19.0 0.80 0.70 0.70 0.70						
Max. permitted housing temperature																				
				-								0								
Ambient temperature										-										
Lubrication				,																
Direction of rotation									In-	and out	put sam	ne direc	tion							
Protection class											IP 65									
Shrink disc (Standard version)	disc									SD (30x060	S2V								
Max. torque (without axial force)			T _{max}	Nm							550									
	С	14	.1	kgcm²	-	-	-	-	-	-	0.80	0.80	0.80	0.70	0.70	0.70	0.70			
		14	J ₁	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	0.71	0.71	0.71	0.62	0.62	0.62	0.62			
Mass moment of inertia (relates to the drive)	Е	19	$J_{_{1}}$	kgcm²	1.50	1.21	1.12	1.03	1.00	1.05	1.20	1.30	1.20	1.10	1.10	1.10	1.10			
Clamping hub diameter [mm]	Ľ		J ₁	10 ⁻³ in.lb.s ²	1.33	1.07	0.99	0.91	0.89	0.93	1.06	1.15	1.06	0.97	0.97	0.97	0.97			
	G	24	J_1	kgcm²	1.6	1.32	1.23	1.14	1.11	1.15	-	-	-	-	-	-	-			
			,	10 ⁻³ in.lb.s ²	1.4	1.2	1.1	1.0	0.98	1.0	-	-	-	-	-	-	-			

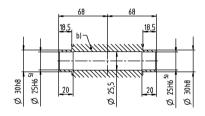

<sup>a) At max. 10 % F_{20Max}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures</sup>


←A

1-stage

up to 19/24 4) (E⁶⁾/G) clamping hub diameter





2-stage

up to 14/19 4) (C⁶⁾/E) clamping hub diameter

Motor shaft diameter [mm]

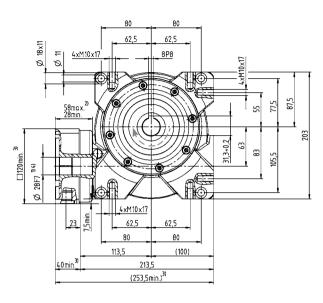
- a) Hollow shaft, keywayed
- b) Hollow shaft, smooth
- c) End disc for screw M10
- d) End disc as forcing washer for screw M12
- e) Locking ring DIN 472

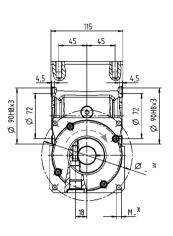
See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

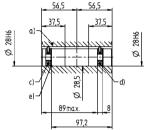
- 2) Min./Max. permissible motor shaft length.
- Longer motor shafts are adaptable, please contact us.

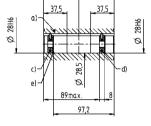
 3) The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Tolerance h6 for mounted shaft.
- 6) Standard clamping hub diameter

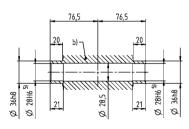
VH+ 063 MF 1-/2-stage

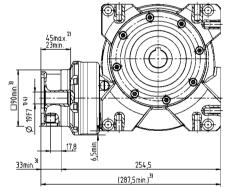

							1-st	tage						2-stage	e		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b)			T _{2a}	Nm	319	353	364	372	392	363	364	353	364	392	363	392	363
(at n ₁ = 500 rpm)			* 2a	in.lb	2823	3124	3221	3292	3469	3213	3221	3124	3221	3469	3213	3469	3213
Torque for constant backlash			T	Nm	198	210	225	221	229	226	225	210	225	229	226	229	226
(over the lifetime)			2Servo													2027	2000
Emergency stop torque a) b) (permitted 1000 times during the service life of the	gearb	ox)	T _{2Not}					-								518 4584	3956
Permitted average input speed (at 20 °C ambient temperature) d			n _{1N}	rpm	4071	4200			4504	0900	4040	4200	4012	3100	0900	4304	3930
Max. input speed			n _{1Max}	rpm							4500						
Mean no load running torque b)			T	Nm	4.2	3.1	3	2.4	2.3	2.2	1.2	0.7	0.7	1.1	1.1	0.8	0.6
(at n, = 3000 rpm and 20 °C gearbox temperature)			012	in.lb	37.2	27.4	26.6	21.2	20.4	19.5	10.6	6.2	6.2	9.7	9.7	7.1	5.3
Max. backlash			j_t	Nm												≤ 3	
Torsional rigidity b)			C	In.lb													
Torona rigitary			121	Nm													
Max. axial force c)			F _{2AMax}														
			ZAWBA	-													
Max. lateral force c)			F 20Max										-				-
Max. tilting moment			M _{2KMax}														
Efficiency at full load			η		93	91	88	83	74	68		89	86	72	66	72	66
Service life			L _h	h				l			> 20000)					
Woight				kg			13	3.0						13.7			
Weight (incl. standard adapter plate)			m														
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L _{PA}								≤ 64						
Management				°C							+90						
Max. permitted housing temperature				F							194						
Ambient temperature				°C							15 to +4	-0					
Ambient temperature				F							5 to 104						
Lubrication			kg 13.0 13.7 lb_m 28.7 30.0 L_{PA} $dB(A)$ ≤ 64 $^{\circ}C$ $+90$ F 194 $^{\circ}C$ -15 to $+40$ F 5 to 104 Lubricated for life In- and output same direction														
Direction of rotation									In-	and out	put san	ne direc	tion				
Protection class											IP 65						
Shrink disc (Standard version)										SD 0	36x072	S2V					
Max. torque (without axial force)			T _{max}	Nm							640						
	Е	19	.1	kgcm²	-	-	-	-	-	-	2.60	2.80	2.50	2.40	2.40	2.40	2.30
		13	J ₁	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	2.30	2.48	2.21	2.12	2.12	2.12	2.04
Mass moment of inertia (relates to the drive)	G	24	$J_{_{1}}$	kgcm²	-	-	-		-	-	4.10	4.30	4.10	4.00	4.00	3.90	3.90
Clamping hub diameter [mm]			J ₁	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	3.63	3.81	3.63	3.54	3.54	3.45	3.45
	н	28	$J_{_{1}}$	kgcm²	4.80	3.89	3.65	3.56	3.52	3.47	-	-	-	-	-	-	-
			, '	10 ⁻³ in.lb.s ²	4.25	3.44	3.23	3.15	3.12	3.07	-	-	-	-	-	-	-


a) At max. 10 % F_{20Max}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures


←A


1-stage


up to 28 4) (H) 6) clamping hub diameter



up to 19/24 4) (E⁶⁾/G) clamping hub diameter

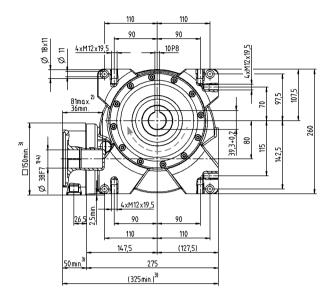
- a) Hollow shaft, keywayed
- b) Hollow shaft, smooth
- c) End disc for screw M10
- d) End disc as forcing washer for screw M12
- e) Locking ring DIN 472

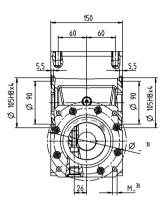
See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

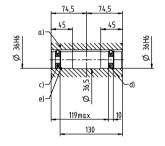
- 2) Min./Max. permissible motor shaft length.
- Longer motor shafts are adaptable, please contact us.

 3) The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Tolerance h6 for mounted shaft.
- 6) Standard clamping hub diameter

VH+ 080 MF 1-/2-stage

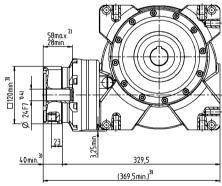

							1-st	age					:	2-stage	9					
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400			
Max. torque a) b)			т	Nm	578	646	672	702	785	676	672	646	672	785	676	785	676			
(at n ₁ = 500 rpm)			² a	in.lb	5115	5717	5947	6213	6947	5983	5947	5717	5947	6947	5983	6947	5983			
Torque for constant backlash			T	Nm	469	601	613	677	764	631	613	601	613	764	631	764	631			
(over the lifetime)			¹ 2Servo	in.lb	4151	5319	5425	5991	6761	5584	5425	5319	5425	6761	5584	6761	5584			
Emergency stop torque ^{a) b)}			T	Nm	938	993	963	1005	1064	941	963	993	963	1064	941	1064	941			
(permitted 1000 times during the service life of the	gearb	ox)	2Not	in.lb	8301	8788	8523	8894	9416	8328	8523	8788	8523	9416	8328	9416	8328			
Permitted average input speed (at 20 °C ambient temperature) d)			n _{1N}	Nm 578 646 672 702 785 676 672 646 672 785 676 in.lb 5115 5717 5947 6213 6947 5983 5947 5717 5947 6947 5983 Nm 469 601 613 677 764 631 613 601 613 764 631 in.lb 4151 5319 5425 5991 6761 5584 5425 5319 5425 6761 5584 Nm 938 993 963 1005 1064 941 963 993 963 1064 941 in.lb 8301 8788 8523 8894 9416 8328 8523 8788 8523 9416 8328 rpm 3500 2900 Nm 7.2 7.1 6.5 5 4.8 4.5 2.8 1.6 1.5 2.4 2.4 in.lb<																
Max. input speed			n _{1Max}	A																
Mean no load running torque b)											2.4	1.8	1.3							
(at n_i = 3000 rpm and 20 °C gearbox temperature)			012	in.lb	63.7	62.8	57.5	44.3	42.5	39.8	24.8	14.2	13.3	21.2	21.2	15.9	11.5			
Max. backlash			j_t	arcmin		Stand	ard ≤ 3	/ Reduc	ed ≤ 2			St	andard							
Tausian al disistitu b			_	In.lb																
Torsional rigidity b)			C _{t21}	in.lb/arcmin							690	7 5717 5947 6947 5983 6947 8 601 613 764 631 764 5 5319 5425 6761 5584 6761 8 993 963 1064 941 1064 3 8788 8523 9416 8328 9416 2900 4500 4500 5 1.6 1.5 2.4 2.4 1.8 3 14.2 13.3 21.2 21.2 15.9 Standard ≤ 4 / Reduced ≤ 3 0 0 55 4 634 90 87 75 68 75 00 29.5 68.0 ≤ 68								
May avial farra ()			_	N							13900			672 785 676 785 5947 6947 5983 6947 613 764 631 764 5425 6761 5584 6761 963 1064 941 1064 8523 9416 8328 9416 2900 4500 1.5 2.4 2.4 1.8 13.3 21.2 21.2 15.9 Indard ≤ 4 / Reduced ≤ 3 87 75 68 75 29.5 68.0 ≤ 68						
Max. axial force ©			F _{2AMax}	lb _f							3128			100						
Maria laboral farra e di			_	N/m 578 646 672 702 785 676 672 646 672 785 676 885 in.lb 5115 5717 5947 6213 6947 5983 5947 5717 5947 6947 5983 6947 N/m 469 601 613 677 764 631 613 601 613 764 631 771 5947 6947 5983 6947 N/m 469 601 613 677 764 631 613 601 613 764 631 717 5947 6947 5983 6947 N/m 938 993 963 1005 1004 941 963 993 963 1064 941 963 993 963 1064 941 963 993 963 1064 941 963 993 963 1066 941 1064 942 900 900 900 900 900 900 900 900 900 900 900 900																
Max. lateral force c)			F _{2QMax}	In.lb																
Many Allaine manager			A 4	Nm 469 601 613 677 764 631 601 613 764 631 764 631 764 631 764 631 764 631 764 631 764 631 764 631 764 631 764 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5584 6761 5683 563 1064 941 1063 903 963 1064 941 1064 941 1064 941 1064 9416 8328 9416 8328 9416 8328 9416 8328 9416 8523 8416 11 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064																
Max. tilting moment			IVI _{2KMax}	in.lb					3 6947 5983 5947 5717 5947 6947 5983 6947 7 764 631 613 601 613 764 631 764 1 6761 5584 5425 5319 5425 6761 5584 6761 5 1064 941 963 993 963 1064 941 1064 4 9416 8328 8523 8788 8523 9416 8328 9416 2900 4500 4500 44 8 4.5 2.8 1.6 1.5 2.4 2.4 1.8 3 42.5 39.8 24.8 14.2 13.3 21.2 21.2 15.9 UCCC ≤ Standard ≤ 4 / Reduced ≤ 3 78 690 13900 3128 9000 2025 1544 13664 77 70 87 90 87 75 68 75 > 20000 29.5 68.0 194 -15 to +40 5 to 104 Lubricated for life In- and output same direction IP 65											
Efficiency at full load (at n,= 500 rpm)			η	%	94	92	89	86	77	70	87	90	87	75	68	75	68			
Service life			L _h	h							> 20000)								
Weight				In In In In In In In In																
(incl. standard adapter plate)			m	lb _m	63.7 62.8 57.5 44.3 42.5 39.8 24.8 14.2 13.3 21.2 21.2 Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 min															
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex*)			L _{PA}				≤	66						≤ 68						
				°C							+90									
Max. permitted housing temperature				F							194									
				°C							15 to +4	10								
Ambient temperature				F							5 to 104	1								
Lubrication								690 13900 3128 9000 2025 1544 13664 89 86 77 70 87 90 87 75 68 > 20000 27.0 29.5 59.7 68.0 ≤ 66 +90 194 -15 to +40 5 to 104 Lubricated for life In- and output same direction IP 65 SD 050x090 S2V 1400 -												
Direction of rotation									In-	and out	put san	ne direc	tion							
Protection class											IP 65									
Shrink disc (Standard version)										SD ()50x090	S2V								
Max. torque (without axial force)			T _{max}	Nm							1400									
				kgcm²	-	-	-	-	-	-	10.40	10.10	10.10	8.80	9.50	9.40	9.30			
Mass moment of inertia	G	24	J_1	10 ⁻³ in.lb.s ²	-	-	-	-	-		9.20	8.94	8.94	7.79	8.41	8.32	8.23			
(relates to the drive) Clamping hub diameter [mm]				kgcm²	20.30	16.75	16.79	15.37	15.26	15.90	17.30	17.00	17.10	15.80	16.40	16.30	16.20			
The state of the s	K	38	$J_{\scriptscriptstyle 1}$	10 ⁻³ in.lb.s ²	17.97	14.82	14.86	13.60	13.51	14.07	15.31	15.05	15.13	13.98	14.51	14.43	14.34			
	_		L																	

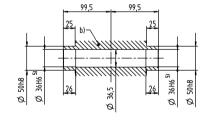

a) At max. 10 % F_{20Max}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures


←A

1-stage

up to 38 4) (K) 6) clamping hub diameter





up to 24/38 4) (G⁶⁾/K) clamping hub diameter

Motor shaft diameter [mm]

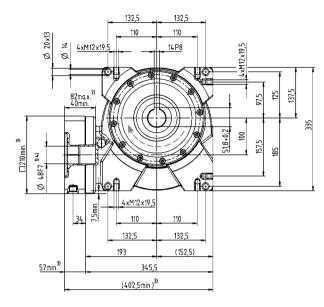
- a) Hollow shaft, keywayed
- b) Hollow shaft, smooth
- c) End disc for screw M12
- d) End disc as forcing washer for screw M16
- e) Locking ring DIN 472

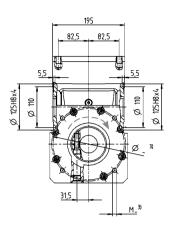
See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

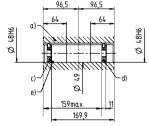
- 2) Min./Max. permissible motor shaft length.
- Longer motor shafts are adaptable, please contact us.

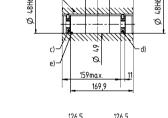
 3) The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Tolerance h6 for mounted shaft.
- 6) Standard clamping hub diameter

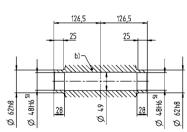
VH* 100 MF 1-/2-stage

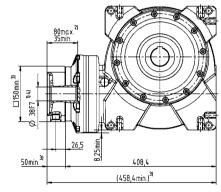

							1-st	age					2	2-stage	Э		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b)			T _{2a}	Nm	1184	1336	1377	1392	1505	1376	1377	1336	1377	1505	1376	1505	1376
(at n ₁ = 500 rpm)			* 2a	in.lb	10478	11824	12186	12319	13319	12178	12186	11825	12186	13319	12178	13319	12178
Torque for constant backlash			T _{2Servo}	Nm	1155				1469	1343		1304					1343
(over the lifetime)			2Servo	in.lb													11886
Emergency stop torque a) b) (permitted 1000 times during the service life of the	gearbo	ox)	T _{2Not}													-	1856 16426
Permitted average input speed (at 20 °C ambient temperature) ^d			n _{1N}	rpm	10090	17090			10040	10420	17109	17109	17109	2700	10420	10040	10420
Max. input speed			n _{1Max}	Nm 1184 1336 1377 1392 1505 1376 1377 1336 1377 1505 in.lb 10478 11824 12186 12319 13319 12178 12186 11825 12186 13319 1 Nm 1155 1304 1343 1359 1469 1343 1304 1343 1469 in.lb 10222 11540 11886 12027 13001 11886 11886 13001 1 Nm 1819 1932 1940 1955 2073 1856 1940 1940 1940 2073 in.lb 16098 17098 17169 17302 18346 16426 17169 17169 18346 1 rpm 3500 2700 4000 2700 4000 Nm 12.2 10.5 9.8 9.1 8.2 7.2 4.1 2.3 2.2 3.8 in.lb 108.0 92.9													
Mean no load running torque b)			_	Nm	12.2	10.5	9.8	9.1	8.2	7.2	4.1	2.3	2.2	3.8	3.6	2.6	2
(at n ₁ = 3000 rpm and 20 °C gearbox temperature)			T ₀₁₂	in.lb	108.0	92.9	86.7	80.5	72.6	63.7	36.3	20.4	19.5	33.6	31.9	23.0	17.7
Max. backlash			j_t	Nm 1184 1336 1377 1392 1505 1376 1377 1336 1377 1505 1376 in.lb 10478 11824 12186 12319 13319 12178 12186 11825 12186 13319 12178 Nm 1155 1304 1343 1393 1469 1343 1343 1304 1343 1469 1343 in.lb 10222 11540 11886 12027 13001 11886 11886 11541 11886 13001 11886 Nm 1819 1932 1940 1955 2073 1856 1940 1940 1940 2073 1886 in.lb 16098 17098 17169 17302 1836 1940 1940 1940 2073 1886 in.lb 3500 4000 4000 4000 4000 4000 Nm 12.2 10.5 9.8 9.1 8.2 7.2 4.1 2.3 2.2 3.8 3.6 In.lb 108.0 9.2 <td>≤ 3</td> <td></td>									≤ 3				
Torsional rigidity b)			0	rpm 3500 4000 Nm 12.2 10.5 9.8 9.1 8.2 7.2 4.1 2.3 2.2 3.8 3.6 2 in.lb 108.0 92.9 86.7 80.5 72.6 63.7 36.3 20.4 19.5 33.6 31.9 22 arcmin Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 153 153 153 153 153 154 N 19500 1													
Torsional rigidity of			C _{t21}	rpm 3500 4000 Nm 12.2 10.5 9.8 9.1 8.2 7.2 4.1 2.3 2.2 3.8 3.6 2 in.lb 108.0 92.9 86.7 80.5 72.6 63.7 36.3 20.4 19.5 33.6 31.9 23 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 153 1354 N 19500 lb _t 4388 N 14000 lb _t 3150 Nm 3059 in.lb 27072 % 95 93 91 87 80 76 89 89 89 78 74 7 h > 20000 kg 51.0 53.6 118.0 lb _m 112.7 118.0													
Max. axial force c)			E	in.lb 16098 17098 17169 17302 18346 16426 17169 17169 17169 18346 16426 1834 rpm 3500 2700 rpm 3500 4000 Nm 12.2 10.5 9.8 9.1 8.2 7.2 4.1 2.3 2.2 3.8 3.6 2.6 in.lb 108.0 92.9 86.7 80.5 72.6 63.7 36.3 20.4 19.5 33.6 31.9 23. arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 1354 N 19500 Ib, 4388 N 14000 Ib, 3150 Nm 3059 in.lb 27072 % 95 93 91 87 80 76 89 89 89 89 78 74 78 h >20000 kg 51.0 53.6 Ibm 112.7 118.0 dB(A) ≤ 70 °C +90 F 194 °C -15 to +40													
Wax. axial force			F _{2AMax}	Nm 1155 1304 1343 1359 1469 1343 1343 1304 1343 1469 1343 1460 1304 1460													
Max. lateral force ©			F	N/m 1155 1304 1343 1359 1469 1343 1343 1343 1469 1360 1300 1469 1360													
Wax. lateral force			F _{2QMax}	Nm													
Max. tilting moment			M _{2KMax}	in.lb													
That then given and			2KMax	in.lb 10222 11540 11886 12027 13001 11886 11541 11886 13001 11886 13 Nm													
Efficiency at full load (at n,= 500 rpm)			η	%	95	93	91	87	80	76	89	89	89	78	74	78	74
Service life			L _n	h						:	> 20000)					
Weight			m											53.6			
(incl. standard adapter plate)				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L _{PA}	dB(A)							≤ 70						
Max. permitted housing temperature				°C							+90						
Max. pormitted flodeling temperature				F							194						
Ambient temperature											15 to +4	0					
7 William Comporators				F							5 to 104						
Lubrication				°C +90 F 194 °C -15 to +40 F 5 to 104													
Direction of rotation									In-	and out	put san	ne direc	tion				
Protection class											IP 65						
Shrink disc (Standard version)										SD 0)62x110	S2V					
Max. torque (without axial force)			T _{max}	Nm							2300						
			_	kgcm²	-	-	-	-	-	-	31.70	33.00	31.10	30.10	30.40	30.00	29.80
Mass moment of inertia	K	38	$J_{_1}$	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	28.05	29.21	27.52	26.64	26.90	26.55	26.37
(relates to the drive) Clamping hub diameter [mm]		4.5		kgcm²	50.25	40.70	38.77	39.62	37.15	37.47	46.40	47.70	45.80	44.80	45.10	44.70	44.50
	M	48	J_1	10 ⁻³ in.lb.s ²	44.47	36.02	34.31	35.06	32.88	33.16	41.06	42.21	40.53	39.65	39.91	39.56	39.38


a) At max. 10 % F_{20Max}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures


←A




up to 48 4) (M) 6) clamping hub diameter



up to 38/48 4) (K⁶⁾/M) clamping hub diameter

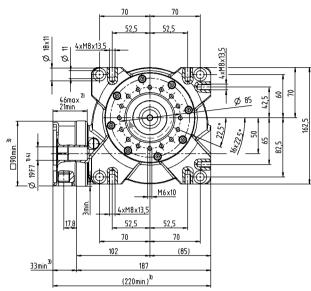
Motor shaft diameter [mm]

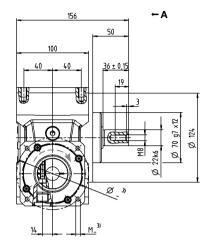
- a) Hollow shaft, keywayed
- b) Hollow shaft, smooth
- c) End disc for screw M16
- d) End disc as forcing washer for screw M20
- e) Locking ring DIN 472

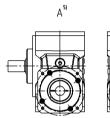
See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

- 2) Min./Max. permissible motor shaft length.
- Longer motor shafts are adaptable, please contact us.

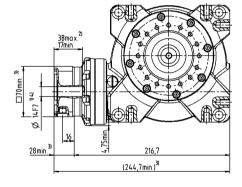
 3) The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Tolerance h6 for mounted shaft.
- 6) Standard clamping hub diameter

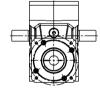

VS+ 050 MF 1-/2-stage


							1-st	age					:	2-stage	•		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b) e)			T _{2a}	Nm	165	180	182	193	204	183	182	180	182	204	183	204	183
(at n ₁ = 500 rpm)			20	in.lb	1460	1593	1611	1708	1805	1620	1611	1593	1611	1805	1620	1805	1620
Torque for constant backlash (over the lifetime)			T _{2Servo}	Nm	54	71	74	81	90	74	74	71	74	90	74	90	74
				in.lb	478 230	628 242	655 242	717 250	797	655 236	655 242	628 242	655 242	797 262	655	797 262	655
Emergency stop torque ^{a) b) e)} (permitted 1000 times during the service life of the	gearbo	ox)	T _{2Not}	Nm in.lb	2036	2142	2142	2213	262	2089	2142	2142	2142	2319	236	2319	236
Permitted average input speed (at 20 °C ambient temperature) ^{d)}			n _{1N}	rpm	2000	2172		00	2013	2003	2142	2142	2142	3500	2005	2010	2003
Max. input speed			n _{1Max}	rpm							6000						
Mean no load running torque b)			T	Nm	2.3	2.2	1.6	1.5	1.2	1.1	0.7	0.5	0.4	0.6	0.6	0.4	0.4
(at n, = 3000 rpm and 20 °C gearbox temperature)			012	in.lb	20.4	19.5	14.2	13.3	10.6	9.7	6.2	4.4	3.5	5.3	5.3	3.5	3.5
Max. backlash			j_t	Nm											≤ 3		
Torsional rigidity b)			C	II.ID													
Toronal rigidity			U ₁₂₁	in.lb													
Max. axial force c)			F _{2AMax}	in.lb 20.4 19.5 14.2 13.3 10.6 9.7 6.2 4.4 3.5 5.3 5.3 3.3 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 8 in.lb/arcmin 71 N 5000 lb₁ 1125 N 3800 lb₁ 855 Nm 409 in.lb 3620 % 92 89 86 82 72 64 84 87 84 70 62 7 h > 20000 kg 9.0 9.7													
			ZAWax	Nm													
Max. lateral force c)			F _{2OMax}										-				
			Laman	'													
Max. tilting moment			M _{2KMax}						-								
		-		III.ID							3020						
Efficiency at full load (at n,= 500 rpm)			η	%	92	89	86	82	72	64	84	87	84	70	62	70	62
Service life			L _n	h							> 20000)					
Weight (incl. standard adapter plate)			m														
Operating noise (at reference ratio and reference speed –			L _{PA}				19	9.9			≤ 62			21.0			
ratio-specific values available in cymex®)			ra I														
Max. permitted housing temperature				°C F							+90						
				°C							194 15 to +4	ın					
Ambient temperature				F							5 to 104						
Lubrication											icated fo						
Direction of rotation									ln-	and out	put san	ne direc	tion				
Protection class											IP 65						
Metal bellows coupling (recommended product type – validate sizing with							В	C3 - 002	200A - 0	22.000 -	- X						
Bore diameter of coupling on the application side		mm						X = 015	5.000 - 0	044.000							
	C 14 J,					-	-	-	-	-	0.80	0.80	0.80	0.70	0.70	0.70	0.70
		14	J ₁	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	0.71	0.71	0.71	0.62	0.62	0.62	0.62
Mass moment of inertia (relates to the drive)	Е	19	J_{1}	kgcm²	1.50	1.21	1.12	1.03	1.00	1.05	1.20	1.30	1.20	1.10	1.10	1.10	1.10
Clamping hub diameter [mm]	_		-1	10 ⁻³ in.lb.s ²	1.33	1.07	0.99	0.91	0.89	0.93	1.06	1.15	1.06	0.97	0.97	0.97	0.97
	G	24	J_1	kgcm²	1.6	1.32	1.23	1.14	1.11	1.15	-	-	-	-	-	-	-
			<u> </u>	10 ⁻³ in.lb.s ²	1.4	1.2	1.1	1.0	0.98	1.0	-	-	-	-	-	-	-


<sup>a) At max. 10 % F_{20Max}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures
e) Smooth shaft</sup>

up to 19/24 4) (E⁶⁾/G) clamping hub diameter

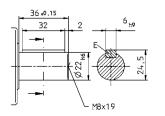


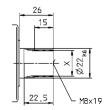

B^{s)}

2-stage

up to 14/19 4) (C6)/E) clamping hub diameter

Motor shaft diameter [mm]




Optional dual-shaft output. Drawings available upon request. Involute gearing is not possible.

Other output variants

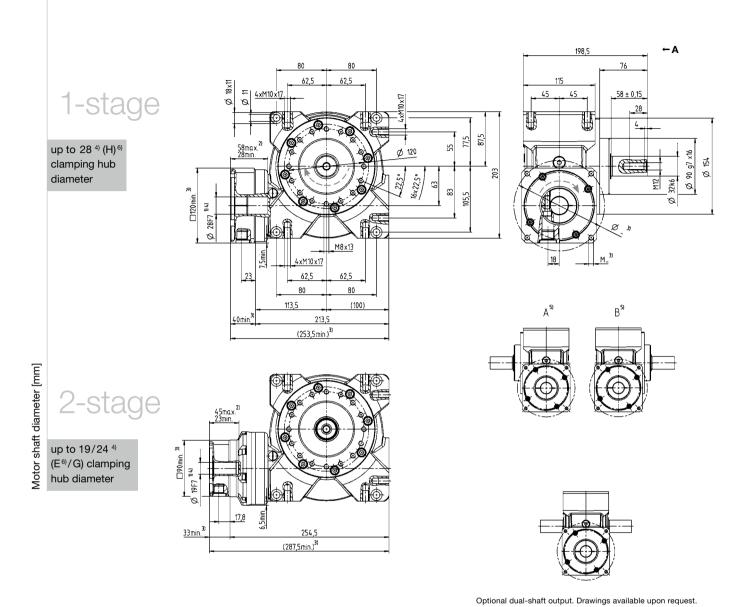
Shaft with key

Splined shaft (DIN 5480)

See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

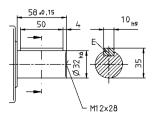
Non-tolerated dimensions are nominal dimensions ¹⁾ Check motor shaft fit. ²⁾ Min./Max. permissible motor shaft length.

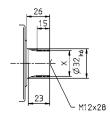
- Longer motor shafts are adaptable, please contact us.
- The dimensions depend on the motor.


 Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
- 5) Output side 6) Standard clamping hub diameter

VS+ 063 MF 1-/2-stage

							1-st	age					:	2-stage	•							
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400					
Max. torque a) b) a)			T _{2a}	Nm	319	353	364	372	392	363	364	353	364	392	363	392	363					
(at n ₁ = 500 rpm)			- 2a	in.lb	2823	3124	3221	3292	3469	3213	3221	3124	3221	3469	3213	3469	3213					
Torque for constant backlash			T _{2Servo}	Nm	198	210	225	221	229	226	225	210	225	229	226	229	226					
(over the meanle)			236/70	in.lb	1752	1859	1991	1956	2027	2000	1991						2000					
Emergency stop torque ^{a) b) e)} (permitted 1000 times during the service life of the	ie gearb	ox)	T _{2Not}	Nm in.lb	460	484 4283	491	494 4372	518 4584	447 3956							3956					
Permitted average input speed (at 20 °C ambient temperature) ^{d)}			n _{1N}	rpm	4071	4200		00	4504	0300	4040	4200	4012	3100	3330	4304	3330					
Max. input speed			n _{1Max}	rpm							4500											
Mean no load running torque b)			_	Nm	4.2	3.1	3	2.4	2.3	2.2	1.2	0.7	0.7	1.1	1.1	0.8	0.6					
(at n, = 3000 rpm and 20 °C gearbox temperature	e)		T ₀₁₂	in.lb	37.2	27.4	26.6	21.2	20.4	19.5	10.6	6.2	6.2	9.7	9.7	7.1	5.3					
Max. backlash			j_t	arcmin		Standa	ard ≤ 3	/ Reduc	ed ≤ 2			221 3124 3221 3469 3213 3469 225 210 225 229 226 229 991 1859 1991 2027 2000 2027 491 484 494 518 447 518 345 4283 4372 4584 3956 4584 3100 500 1.2 0.7 0.7 1.1 1.1 0.8 0.6 6.2 6.2 9.7 9.7 7.1 Standard ≤ 4 / Reduced ≤ 3 28 248 250 856 000 350 343 461 86 89 86 72 66 72 20000 16.7 37.0 3644										
Torsional rigidity b)			C	Nm/arcmin							10.6 6.2 6.2 9.7 9.7 7.1 Standard ≤ 4 / Reduced ≤ 3 28 248 8250 1856 6000 1350 843 7461											
Torsional rigidity			C _{t21}	in.lb/arcmin							248	1 0.7 0.7 1.1 1.1 0.8 6 6.2 6.2 9.7 9.7 7.1 Standard ≤ 4 / Reduced ≤ 3 3 0 6 0 0 0 3 1 89 86 72 66 72										
Max. axial force c)			F _{2AMax}	Ν							8250	0.7 0.7 1.1 1.1 0.8 6.2 6.2 9.7 9.7 7.1 Standard ≤ 4 / Reduced ≤ 3 89 86 72 66 72 16.7										
Wax. axial force			* 2AMax	lb _f							1856											
Max. lateral force ©			F _{2QMax}	N							6000											
			2QMax	lb _f							1350											
Max. tilting moment			M _{2KMax}	Nm																		
			2KMax	in.lb						ı	7461			1								
Efficiency at full load (at n,= 500 rpm)			η	%	93	91	88	83	74	68	86	89	86	72	66	72	66					
Service life			L _n	h							> 20000)										
Weight (incl. standard adapter plate)			m	kg Ib _m				5.4	-													
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L _{PA}	dB(A)							≤ 64			0.7								
Max. permitted housing temperatur	e			°C							+90											
That politica housing temperatur				F							194											
Ambient temperature				°C							15 to +4											
·				F							5 to 104											
Lubrication										Lubr	icated fo	or life										
Direction of rotation									In-	and out	put sam	ne direc	tion									
Protection class											IP 65											
Metal bellows coupling (recommended product type – validate sizing wi	h cymex	*)							В	C3 - 005	600A - 0	32.000	- X									
Bore diameter of coupling on the application side				mm						X = 024	1.000 - 0	056.000										
	Е	19	J,	kgcm²	-	-	-	-	-	-	2.60	2.80	2.50	2.40	2.40	2.40	2.30					
		13	J ₁	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	2.30	2.48	2.21	2.12	2.12	2.12	2.04					
Mass moment of inertia (relates to the drive)	G	24	J_{1}	kgcm²	-	-	-	-	-	-	4.10	4.30	4.10	4.00	4.00	3.90	3.90					
Clamping hub diameter [mm]			1	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	3.63	3.81	3.63	3.54	3.54	3.45	3.45					
	Н	28	J_1	kgcm²	4.80	3.89	3.65	3.56	3.52	3.47	-	-	-	-	-	-	-					
			,	10 ⁻³ in.lb.s ²	4.25	3.44	3.23	3.15	3.12	3.07	-	-	-	-	-	-	-					


a) At max. 10 % F_{20Max}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures
e) Smooth shaft



Other output variants

Shaft with key

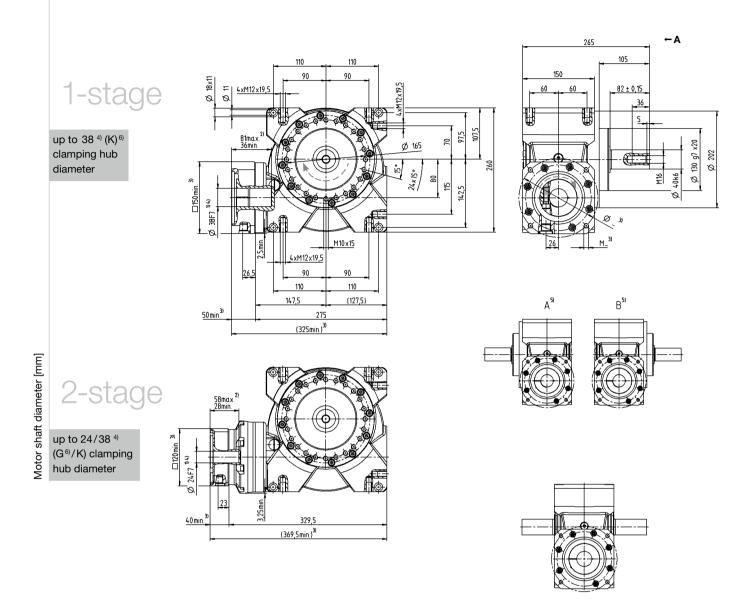
Splined shaft (DIN 5480)

See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

Non-tolerated dimensions are nominal dimensions

- Check motor shaft fit.
 Min./Max. permissible motor shaft length.
- Longer motor shafts are adaptable, please contact us.
- The dimensions depend on the motor.

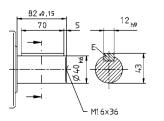
 Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.

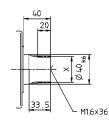

Involute gearing is not possible.

5) Output side 6) Standard clamping hub diameter

VS+ 080 MF 1-/2-stage

							1-st	age					:	2-stage	Э		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b) e)			T _{2a}	Nm	578	646	672	702	785	676	672	646	672	785	676	785	676
(at n ₁ = 500 rpm)			* 2a	in.lb	5115	5717	5947	6213	6947	5983	5947	5717	5947	6947	5983	6947	5983
Torque for constant backlash			т	Nm	469	601	613	677	764	631	613	601	613	764	631	764	631
(over the lifetime)			2Servo	in.lb	4151	5319	5425	5991	6761	5584	5425	5319	5425	6761	5584	6761	5584
Emergency stop torque a) b) e)			T _{2Not}	Nm	938	993	963	1005	1064	941	963	993	963	1064	941	1064	941
(permitted 1000 times during the service life of the g	earbo	ox)	2Not	in.lb	8301	8788	8523	8894	9416	8328	8523	8788	8523	9416	8328	9416	8328
Permitted average input speed (at 20 °C ambient temperature) ^d			n _{1N}	Nm 578 646 672 702 785 676 672 646 672 785 676 in.lb 5115 5717 5947 6213 6947 5983 5947 5717 5947 6947 5983 Nm 469 601 613 677 764 631 613 601 613 764 631 in.lb 4151 5319 5425 5991 6761 5584 5425 5319 5425 6761 5584 Nm 938 993 963 1005 1064 941 963 993 963 1064 941 in.lb 8301 8788 8523 8894 9416 8328 8523 8788 8523 9416 8328 rpm 3500 2900 4500 Nm 7.2 7.1 6.5 5 4.8 4.5 2.8 1.6 1.5 2.4 2.4 <													
Max. input speed			n _{1Max}	Nm													
Mean no load running torque b)			T	Nm	7.2	7.1	6.5	5	4.8	4.5	2.8	1.6	1.5	2.4	2.4	1.8	1.3
(at $n_{_{1}}$ = 3000 rpm and 20 °C gearbox temperature)			012	in.lb	63.7	62.8	57.5	44.3	42.5	39.8	24.8	14.2	13.3	21.2	21.2	15.9	11.5
Max. backlash			j_t	arcmin	4 7 10 16 28 40 50 70 100 140 200 21 578 646 672 702 785 676 672 646 672 785 676 78 5115 5717 5947 6213 6947 5983 5947 5717 5947 6947 5983 69 469 601 613 677 764 631 631 613 601 613 764 631 78 4151 5319 5425 5991 6761 5584 5425 5319 5425 6761 5584 676 938 993 963 1005 1064 941 963 993 963 1064 941 10 8301 8788 8523 8894 9416 8328 8523 8788 8523 9416 8328 94 3500 2900 4000 4500 4000 4500 4500 77.2 7.1 6.5 5 4.8 4.5 2.8 1.6 1.5 2.4 2.4 1 63.7 62.8 57.5 44.3 42.5 39.8 24.8 14.2 13.3 21.2 21.2 15 Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 78 690 13900 3128 9000 2025 1544 13664 94 92 89 86 77 70 87 90 87 75 68 7 > 20000 33.0 35.5 72.9 78.0 ≤ 66 +90 194 -15 to +40 5 to 104 Lubricated for life In- and output same direction IP 65									≤ 3			
Tourismed visidity, b)			0	in.lb 5115 5717 5947 6213 6947 764 631 6947 5983 6947 6717 5947 6947 6947 6947 6947 6947 6947 6947 6													
Torsional rigidity b)			C _{t21}	in.lb 5115 5717 5947 6213 6947 5983 5947 5717 5947 6947 5983 6947 in.lb 4151 5319 5425 5991 6761 5584 5425 5319 5425 6761 5584 6761 in.lb 4151 6319 5425 5991 6761 5584 5425 5319 5425 6761 5584 6761 in.lb 8301 8788 8523 8894 9416 8328 8523 8788 8523 9416 8328 9416 in.lb 63.7 62.8 57.5 44.3 42.5 39.8 24.8 14.2 13.3 21.2 21.2 15.9 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 N/m 13900 N/m													
Max. axial force ©			E	N						40							
Max. axiai force -/			r _{2AMax}	Nm													
Max. lateral force c)			_	N							9000						
Wax. lateral lorce			² 2QMax	lb _f							2025						
Max. tilting moment			Λ4	In.lib													
wax. tilting moment			1VI _{2KMax}	in.lb													
Efficiency at full load (at n,= 500 rpm)			η	%	94	4 7 10 16 28 40 50 70 100 140 578 646 672 702 785 676 672 646 672 785 5115 5717 5947 6213 6947 5983 5947 5717 5947 6947 469 601 613 677 764 631 613 601 613 764 469 601 613 677 764 631 613 601 613 764 48301 8788 8523 8894 9416 8328 8523 8788 8523 9416 3500		68	75	68							
Service life			L_h	Nm													
Weight			m														
(incl. standard adapter plate)			111	Image: Name													
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L_{PA}	dB(A)			≤ (66						≤ 68			
M				°C							+90						
Max. permitted housing temperature				F							194						
Ambient temperature				°C							15 to +4	0					
Ambient temperature				F							5 to 104	ļ					
Lubrication				In In In In In In In In													
Direction of rotation									In-	and out	put san	ne direc	tion				
Protection class											IP 65						
Motel bellevia courting	ymex	°)							ВС	C3 - 008	800A - 0	40.000	- X				
Metal bellows coupling (recommended product type – validate sizing with c				F 194 °C -15 to +40 F 5 to 104 Lubricated for life In- and output same direction IP 65 BC3 - 00800A - 040.000 - X										-			
				mm						X = 030).000 - t	000.000					
(recommended product type – validate sizing with c			_		-	-	-	-		X = 030			10.10	8.80	9.50	9.40	9.30
(recommended product type – validate sizing with of Bore diameter of coupling on the application side Mass moment of inertia	G	24	J ₁	kgcm²	-		-		-	-	10.40	10.10				9.40	9.30 8.23
(recommended product type – Validate sizing with of Bore diameter of coupling on the application side	G	24		kgcm² 10 ⁻³ in.lb.s²		-	- - 16.69	-	-	-	10.40 9.20	10.10	8.94	7.79	8.41	_	


a) At max. 10 % F_{20Max}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures
e) Smooth shaft

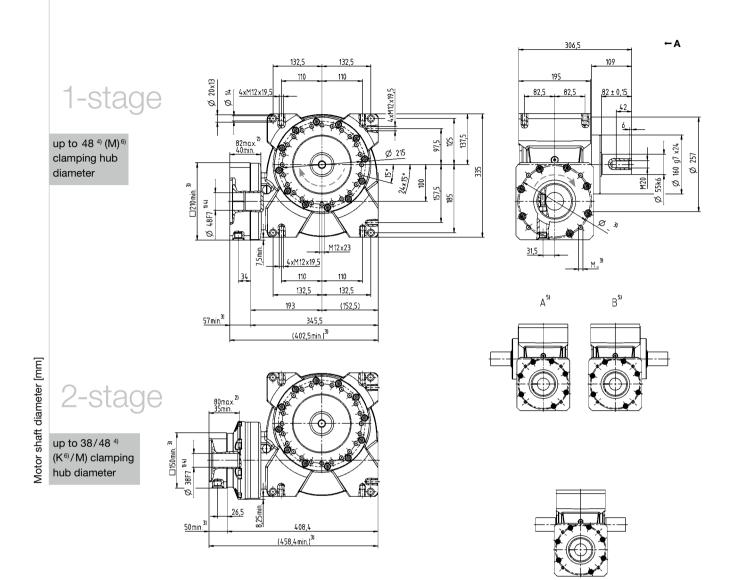

Optional dual-shaft output. Drawings available upon request. Involute gearing is not possible.

Other output variants

Shaft with key

Splined shaft (DIN 5480)

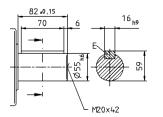
See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

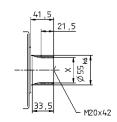

Non-tolerated dimensions are nominal dimensions

- Check motor shaft fit.
 Min./Max. permissible motor shaft length.
- Longer motor shafts are adaptable, please contact us.
- 3) The dimensions depend on the motor.
 4) Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
- 5) Output side 6) Standard clamping hub diameter

VS+ 100 MF 1-/2-stage

							1-st	age					-	2-stage	е		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b) e)			T _{2a}	Nm	1184	1336	1377	1392	1505	1376	1377	1336	1377	1505	1376	1505	1376
(at n,= 500 rpm)			* 2a	in.lb	10478	11824	12186	12319	13319	12178	12186	11825	12186	13319	12178	13319	12178
Torque for constant backlash			T _{2Servo}	Nm	1155				1469	1343		1304			1343	1469	1343
(over the lifetime)			2Servo	in.lb													11886
Emergency stop torque a) b) e) (permitted 1000 times during the service life of the	gearbo	ox)	T _{2Not}													-	1856 16426
Permitted average input speed (at 20 °C ambient temperature) ^(a)			n _{1N}	rpm	16096	17096			10040	10420	17109	17109	17109	2700	10420	10040	10420
Max. input speed			n _{1Max}	rpm			35	00						4000			
Manage and I and manage to the same by				Nm	12.2	10.5	9.8	9.1	8.2	7.2	4.1	2.3	2.2	3.8	3.6	2.6	2
Mean no load running torque b) (at n, = 3000 rpm and 20 °C gearbox temperature)			T ₀₁₂	in.lb	108.0	92.9	86.7	80.5	72.6	63.7	36.3	20.4	19.5	33.6	31.9	23.0	17.7
Max. backlash			j_t	Nm 1184 1336 1377 1392 1505 1376 1377 1336 13 in.lb 10478 11824 12186 12319 13319 12178 12186 11825 121 Nm 1155 1304 1343 1359 1469 1343 1343 1304 13 in.lb 10222 11540 11886 12027 13001 11886 11886 11541 118 Nm 1819 1932 1940 1955 2073 1856 1940 1940 19 in.lb 16098 17098 17169 17302 18346 16426 17169 17169 171 rpm 3500 3500 3500 36.3 20.4 19 n.lb 108.0 92.9 86.7 80.5 72.6 63.7 36.3 20.4 19 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 3 1354 3150 3150 3150 Nm 14000 10b, 3150 3059 3059 305								andard:	≤ 4 / Re	duced :	≤ 3		
Tavaian al visialita b			0	rpm 3500 2700 rpm 3500 4000 Nm 12.2 10.5 9.8 9.1 8.2 7.2 4.1 2.3 2.2 3.8 3.6 in.lb 108.0 92.9 86.7 80.5 72.6 63.7 36.3 20.4 19.5 33.6 31.9 2 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 1354 N 19500 lb _t 4388 N 14000 lb _t 3150 Nm 3059 in.lb 27072 % 95 93 91 87 80 76 89 89 89 78 74 h > 20000 kg 62.0 64.6 lb _m 137.0 143.0 dB(A) ≤ 70													
Torsional rigidity b)			C ₁₂₁	rpm 3500 2700 Nm 12.2 10.5 9.8 9.1 8.2 7.2 4.1 2.3 2.2 3.8 3.6 in.lb 108.0 92.9 86.7 80.5 72.6 63.7 36.3 20.4 19.5 33.6 31.9 Arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ Nm/arcmin 153 in.lb/arcmin 19500 lb _t 4388 N 14000 lb _t 3150 Nm 3059 in.lb 27072 % 95 93 91 87 80 76 89 89 89 74 h > 20000 kg 62.0 64.6 64.6 lb _m 137.0 143.0 43.0 °C +90 194 -15 to +40													
Max. axial force c)			E	in.lb 10222 11540 11886 12027 13001 11886 11886 11886 11541 11886 13001 11886 1301 in.lb 1819 1932 1940 1955 2073 1856 1940 1940 2073 1856 20 in.lb 16098 17098 17169 17302 18346 16426 17169 17169 17169 18346 16426 183 17098 17169 17169 17169 17169 17169 18346 16426 183 17098 17169													
Wax. axiai force			F _{2AMax}	in.lb													
Max. lateral force c)			F _{2QMax}	Nm													
metriculariore			2QMax	In.lib													
Max. tilting moment			M _{2KMax}	In.lb													
			ZNIVIdX	Nm													
Efficiency at full load (at n,= 500 rpm)			η	%	95	93	91	87	80	76	89	89	89	78	74	78	74
Service life			L _h	h						:	> 20000)					
Weight			m														
(incl. standard adapter plate)				lb _m			13	7.0						143.0	-		
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L _{PA}	Nm													
Max. permitted housing temperature				°C							+90						
max. pormitted fielding temperature				ļ -							194						
Ambient temperature										-							
				F							5 to 104						
Lubrication				Ib _m								or life					
Direction of rotation									In-	and out	put san	ne direc	tion				
Protection class											IP 65						
Metal bellows coupling (recommended product type – validate sizing with	coupling ct type – validate sizing with cymex*) of coupling								В	C3 - 015	600A - 0	55.000	- X				
Bore diameter of coupling on the application side				mm						X = 035	5.000 - 0	70.000					
				kgcm²	-	-	-	-	-	-	31.70	33.00	31.10	30.10	30.40	30.00	29.80
Mass moment of inertia	K	38	$J_{_{1}}$	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	28.05		27.52	26.64	26.90	26.55	26.37
(relates to the drive) Clamping hub diameter [mm]	p. 4	40	,	kgcm²	50.02	40.63	38.73	39.60	37.14	37.47	46.40	47.70	45.80	44.80	45.10	44.70	44.50
	M	48	$J_{_{1}}$	10 ⁻³ in.lb.s ²	44.27	35.96	34.28	35.05	32.87	33.16	41.06	42.21	40.53	39.65	39.91	39.56	39.38


<sup>a) At max. 10 % F_{POMax}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures
c) Smooth shaft</sup>

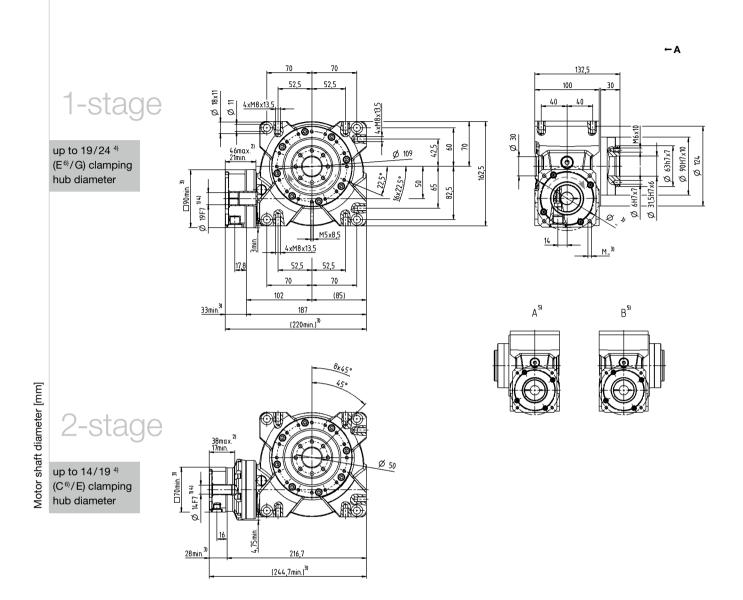

Optional dual-shaft output. Drawings available upon request. Involute gearing is not possible.

Other output variants

Shaft with key

Splined shaft (DIN 5480)

See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.


Non-tolerated dimensions are nominal dimensions

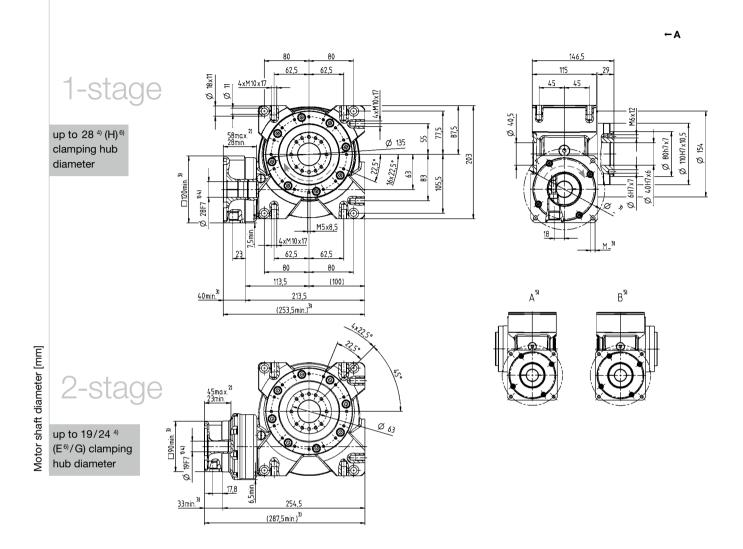
- Check motor shaft fit.
 Min./Max. permissible motor shaft length.
- Longer motor shafts are adaptable, please contact us.
- 3) The dimensions depend on the motor.
 4) Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
- 5) Output side 6) Standard clamping hub diameter

VT+ 050 MF 1-/2-stage

							1-st	age					:	2-stage	•		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b)			T _{2a}	Nm	165	180	182	193	204	183	182	180	182	204	183	204	183
(at n ₁ = 500 rpm)			20	in.lb	1460	1593	1611	1708	1805	1620	1611	1593	1611	1805	1620	1805	1620
Torque for constant backlash (over the lifetime)			T _{2Servo}	Nm · "	54	71	74	81	90	74	74	71	74	90	74	90	74
(2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				in.lb	478	628 242	655 242	717 250	797	655 236	655 242	628	655 242	797 262	655	797 262	655
Emergency stop torque ^{a) b)} (permitted 1000 times during the service life of tr	ie gearb	ox)	T _{2Not}	Nm in.lb	230	2142	2142	2213	262	2089	2142	242	2142	2319	236	2319	236
Permitted average input speed (at 20 °C ambient temperature) ^{d)}			n _{1N}	rpm						1				3500		1	
Max. input speed			n _{1Max}	rpm							6000						
Mean no load running torque b)			T	Nm	2.3	2.2	1.6	1.5	1.2	1.1	0.7	0.5	0.4	0.6	0.6	0.4	0.4
(at n, = 3000 rpm and 20 °C gearbox temperature)		T ₀₁₂	in.lb	20.4	19.5	14.2	13.3	10.6	9.7	6.2	4.4	3.5	5.3	5.3	3.5	3.5
Max. backlash			j_t	Indian Image: Proper law and properties of the properties of												≤ 3	
Torsional rigidity b)			C _{t21}				1	7						8			
Toroional rigidity			121				1:	50						71			
Max. axial force c)			F _{2AMax}						-		-		-				
			ZAIVIdX	<u> </u>										-			
Max. tilting moment			M _{2KMax}														
				In.Ib							3620						
Efficiency at full load (at n,= 500 rpm)			η		92	89	86	82	72	64		87	84	70	62	70	62
Tilting rigidity			C_{2K}														
Service life			L _h	h			-		-		> 20000)					
			"	ka				.0						9.5			
Weight (incl. standard adapter plate)			m	kg lb _m				.0).9	-				-	21.0			
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L _{PA}	dB(A)							≤ 62						
				°C							+90						
Max. permitted housing temperatur	е			F							194						
A mark i a mak da mana a mada ma				°C						-	15 to +4	10					
Ambient temperature				F							5 to 104	1					
Lubrication										Lubr	icated f	or life					
Direction of rotation									In-	and out	put san	ne direc	tion				
Protection of rotation											IP 65						
Metal bellows coupling ecommended product type – validate sizing with cymex*)									ı	BCT-000	060AAX	-050.00	0				
lore diameter of coupling n the application side			mm						X = 014	4.000 - (035.000						
		4.4	,	kgcm²	-	-	-	-	-	-	0.80	0.80	0.80	0.70	0.70	0.70	0.70
	С	14	$J_{_{1}}$	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	0.71	0.71	0.71	0.62	0.62	0.62	0.62
Mass moment of inertia (relates to the drive)	Е	19	.,	kgcm²	1.50	1.21	1.12	1.03	1.00	1.05	1.20	1.30	1.20	1.10	1.10	1.10	1.10
Clamping hub diameter [mm]	_	19	J ₁	10 ⁻³ in.lb.s ²	1.33	1.07	0.99	0.91	0.89	0.93	1.06	1.15	1.06	0.97	0.97	0.97	0.97
	G	24	J_1	kgcm²	1.6	1.32	1.23	1.14	1.11	1.15	-	-	-	-	-	-	-
			- 1	10 ⁻³ in.lb.s ²	1.4	1.2	1.1	1.0	0.98	1.0	-	-	-	-	-	-	-

<sup>a) At max. 10 % M_{2KMax}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures</sup>

See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.


- ²⁾ Min./Max. permissible motor shaft length. Longer motor shafts are adaptable, please contact us.

 3) The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Output side
- 6) Standard clamping hub diameter

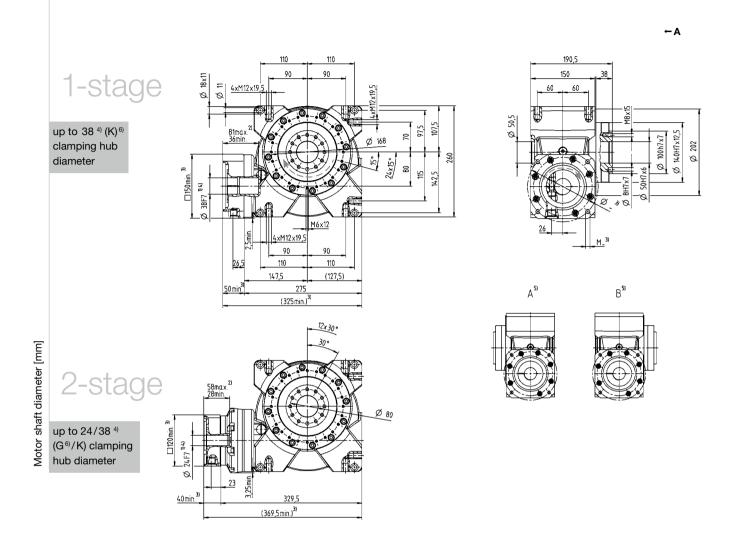
VT+ 063 MF 1-/2-stage

							1-st	age					:	2-stage	•		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b)			T _{2a}	Nm	319	353	364	372	392	363	364	353	364	392	363	392	363
(at n ₁ = 500 rpm)			20	in.lb	2823	3124	3221	3292	3469	3213	3221	3124	3221	3469	3213	3469	3213
Torque for constant backlash			T _{2Servo}	Nm	198	210	225	221	229	226	225	210	225	229	226	229	226
(Over the medine)			236/70	in.lb	1752	1859	1991	1956	2027	2000	1991	1859	1991	2027	2000	2027	2000
Emergency stop torque ^{a) b)} (permitted 1000 times during the service life of th	e gearb	ox)	T _{2Not}	in.lb								-					447 3956
Permitted average input speed (at 20 °C ambient temperature) ⁽ⁱ⁾			n _{1N}	rpm										3100			
Max. input speed			n _{1Max}	Nm/arcmin 50 28 in.lb/arcmin 443 248 N 8250 lb _t 1856 Nm 843													
Mean no load running torque b)			T	Nm	4.2	3.1	3	2.4	2.3	2.2	1.2	0.7	0.7	1.1	1.1	0.8	0.6
(at n, = 3000 rpm and 20 °C gearbox temperature			T ₀₁₂	in.lb	37.2	27.4	26.6	21.2	20.4	19.5	10.6	6.2	6.2	9.7	9.7	7.1	5.3
Max. backlash			j_t	Nm 460 484 491 494 518 447 491 484 494 518 447 518 in.lb 4071 4283 4345 4372 4584 3956 4345 4283 4372 4584 3956 4584 rpm 4000 3100 Nm 4.2 3.1 3 2.4 2.3 2.2 1.2 0.7 0.7 1.1 1.1 0.8 in.lb 37.2 27.4 26.6 21.2 20.4 19.5 10.6 6.2 6.2 9.7 9.7 7.1 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 50 28 in.lb/arcmin 443 248 Nm 8250 lb, 1856												≤ 3	
Torsional rigidity b)			C ₁₂₁	Nm/arcmin			5	0						28			
Torsional rigidity			U _{t21}	in.lb/arcmin			4	43						248			
Max. axial force c)			F _{2AMax}	N							8250						
			2AMax	lb _f					-		1856						
Max. tilting moment			M _{2KMax}	Nm		-					843						
3 1			2KMax	in.lb						1	7461			1			
Efficiency at full load (at n,= 500 rpm)			η	%	93	91	88	83	74	68	86	89	86	72	66	72	66
Tilting rigidity			C _{2K}	Nm/arcmin							603						
Thung rigidity			O _{2K}	in.lb/arcmin							5337						
Service life			L _h	h							> 20000)					
Weight (incl. standard adapter plate)			m														
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L _{PA}	dB(A)							≤ 64						
Many representational leaves in a decrease and the				°C							+90						
Max. permitted housing temperature	,			F							194						
Ambient temperature				°C						-	15 to +4	10					
Ambient temperature				F							5 to 104	1					
Lubrication										Lubr	icated fo	or life					
Direction of rotation									ln-	and out	put san	ne direc	tion				
Protection class											IP 65						
Metal bellows coupling (recommended product type – validate sizing with	n cymex	·*)								BCT-001	I50AAX	-063.00	0				
Bore diameter of coupling on the application side				mm						X = 019	9.000 - (042.000					
	_	40	,	kgcm²	-	-	-	-	-	-	2.60	2.80	2.50	2.40	2.40	2.40	2.30
	E	19	J_{1}	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	2.30	2.48	2.21	2.12	2.12	2.12	2.04
Mass moment of inertia (relates to the drive)		0.4	,	kgcm²	-	-	-	-	-	-	4.10	4.30	4.10	4.00	4.00	3.90	3.90
(relates to the drive) Clamping hub diameter [mm]	G	24	$J_{\scriptscriptstyle 1}$	10 ⁻³ in.lb.s ²	-	1	-	-	-	-	3.63	3.81	3.63	3.54	3.54	3.45	3.45
	Н	28	J_1	kgcm²	4.80	3.89	3.65	3.56	3.52	3.47	-	-	-	-	-	-	-
	1 17	1 40	ı U.	10 ⁻³ in.lb.s ²	4.25	3.44	3.23	3.15	3.12	3.07						_	_

<sup>a) At max. 10 % M_{2KMax}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures</sup>

See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

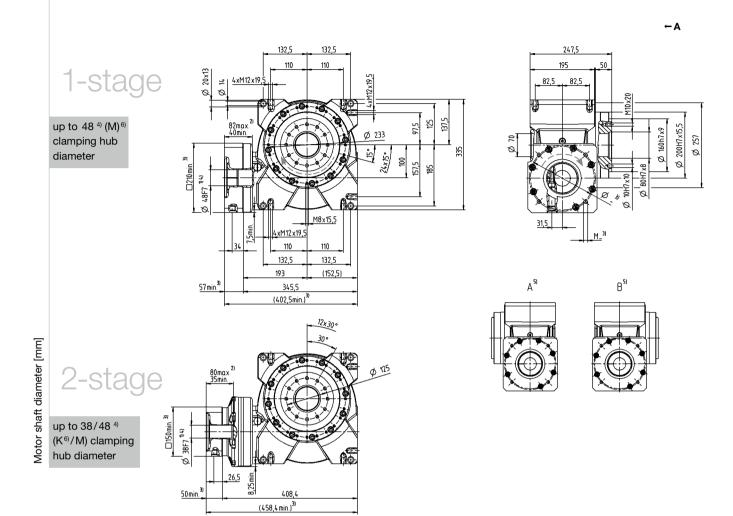
- ²⁾ Min./Max. permissible motor shaft length. Longer motor shafts are adaptable, please contact us.


 3) The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Output side
- 6) Standard clamping hub diameter

VT+ 080 MF 1-/2-stage

							1-st	tage						2-stag	e		
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b)			T _{2a}	Nm	578	646	672	702	785	676	672	646	672	785	676	785	676
(at n _i = 500 rpm)			* 2a	in.lb	5115	5717	5947	6213	6947	5983	5947	5717	5947	6947	5983	6947	5983
Torque for constant backlash			T _{2Servo}	Nm	469	601	613	677	764	631	613	601	613	764	631	764	631
(over the lifetime)			2Servo	in.lb	4151	5319	5425	5991	6761	5584	5425	5319	5425	6761	5584	6761	5584
Emergency stop torque a) b)			T _{2Not}	Nm	938	993	963	1005	1064	941	963	993	963	1064	941	1064	941
(permitted 1000 times during the service life of the	gearb	iox)	2Not	in.lb	8301	8788	8523	8894	9416	8328	8523	8788	8523	9416	8328	9416	8328
Permitted average input speed (at 20 °C ambient temperature) d			n _{1N}	rpm			35	00						2900			
Max. input speed			n _{1Max}	rpm			40	00						4500			
Mean no load running torque b)			_	Nm	7.2	7.1	6.5	5	4.8	4.5	2.8	1.6	1.5	2.4	2.4	1.8	1.3
(at $n_1 = 3000$ rpm and 20 °C gearbox temperature)			T ₀₁₂	in.lb	63.7	62.8	57.5	44.3	42.5	39.8	24.8	14.2	13.3	21.2	21.2	15.9	11.5
Max. backlash			j_t	rpm 3500 2900 Nm 7.2 7.1 6.5 5 4.8 4.5 2.8 1.6 1.5 2.4 2.4 in.lb 63.7 62.8 57.5 44.3 42.5 39.8 24.8 14.2 13.3 21.2 21.2 1 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 3 Nm/arcmin 113 78 in.lb/arcmin 1000 690 N 13900 b _f 3128 Nm 1544 in.lb 13664											≤ 3		
Tavaianal viaiditu (b)			_	in.lb/arcmin 1000 690 N 13900 Ib₁ 3128 Nm 1544													
Torsional rigidity b)			C ₁₂₁	in.lb/arcmin			10	00						690			
May avial favor ()			_	Nm/arcmin 113 78 in.lb/arcmin 1000 690 N 13900 lb, 3128 Nm 1544 in.lb 13664 % 94 92 89 86 77 70 87 90 87 75 Nm/arcmin 1178 in.lb/arcmin 10425													
Max. axial force c)			F _{2AMax}	lb _f							3128						
Max. tilting moment			M _{2KMax}														
Efficiency at full load (at n,= 500 rpm)			η	%	94	92	89	86	77	70	87	90	87	75	68	75	68
Tilting rigidity			C _{2K}	Nm 938 993 963 1005 1064 941 963 993 963 1064 in.lb 8301 8788 8523 8894 9416 8328 8523 8788 8523 9416 rpm 3500 2900 Nm 7.2 7.1 6.5 5 4.8 4.5 2.8 1.6 1.5 2.4 in.lb 63.7 62.8 57.5 44.3 42.5 39.8 24.8 14.2 13.3 21.2 arcmin Standard ≤ 3 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 2 13900 N 13900 13900 13900 13900 13900 1544 <td></td> <td></td> <td></td>													
Thung rigidity			O _{2K}	rpm 3500 2900 rpm 4000 4500 Nm 7.2 7.1 6.5 5 4.8 4.5 2.8 1.6 1.5 2.4 in.lb 63.7 62.8 57.5 44.3 42.5 39.8 24.8 14.2 13.3 21.2 arcmin Standard ≤ 4 / Reduced ≤ 2 Standard ≤ 4 / Reduced ≤ 2 Nm/arcmin 113 78 78 78 78 78 79 690 Nm 13900 13900 13900 80 80 77 70 87 90 87 75 Nm/arcmin 1178 13664 1178 1178 1178 1178 1178 1178 10425 1178 1178 1178 10425 1178 10425 1178 10425 1178 10425 1178 10425 1178 10425 1178 1178 1178 1178 1178 1178 1178 1178 1178 1178 1178 1178 1178 1178 1178 1178 <													
Service life			L _h	h							> 20000)					
Weight			m	kg			32	.0						33.5			
(incl. standard adapter plate)			m	lb _m			70	.7						74.0			
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L _{PA}	dB(A)			≤ (66						≤ 68			
				°C							+90						
Max. permitted housing temperature				F							194						
Ambient temperature				°C						-	15 to +4	10					
Ambient temperature				F							5 to 104	4					
Lubrication										Lubr	icated f	or life					
Direction of rotation									In-	and out	put san	ne direc	tion				
Protection class											IP 65						
Metal bellows coupling (recommended product type – validate sizing with	cyme	x®)							E	BCT-003	300AAX-	-080.000)			,	
Bore diameter of coupling				mm X = 024.000 - 060.000													
on the application side		_			-	_	-	_	-	_	10.40	10.10	10.10	8.80	9.50	9.40	9.30
on the application side				kqcm²													
Mass moment of inertia	G	24	$J_{_{1}}$	kgcm² 10 ⁻³ in.lb.s²	-	-	-	-	-	-	9.20	8.94	8.94	7.79	8.41	8.32	8.23
	G K	24	J ₁			- 16.56	- 16.69	- 15.33	- 15.24	- 15.90			8.94				8.23 16.20

<sup>a) At max. 10 % M_{2KMax}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures</sup>


See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

- ²⁾ Min./Max. permissible motor shaft length. Longer motor shafts are adaptable, please contact us. ³⁾ The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Output side
- 6) Standard clamping hub diameter

VT* 100 MF 1-/2-stage

							1-st	tage			2-stage						
Ratio			i		4	7	10	16	28	40	50	70	100	140	200	280	400
Max. torque a) b)			T _{2a}	Nm	1184	1336	1377	1392	1505	1376	1377	1336	1377	1505	1376	1505	1376
(at n ₁ = 500 rpm)			* 2a	in.lb	10478	11824	12186	12319	13319	12178	12186	11825	12186	13319	12178	13319	12178
Torque for constant backlash			T _{2Servo}	Nm	1155	1304	1343	1359	1469	1343	1343	1304	1343	1469	1343	1469	1343
(over the lifetime)			2Servo	in.lb	10222	11540	11886	12027	13001	11886	11886	11541	11886	13001	11886	13001	11886
Emergency stop torque a) b) (permitted 1000 times during the service life of the	aearh	0 v)	T _{2Not}	Nm · "	1819	1932	1940	1955	2073	1856	1940	1940	1940	2073	1856	2073	1856
(permitted 1000 times during the service life of the s	gearb	UX)	2701	in.lb	16098	17098	17169	17302	18346	16426	17169	17169	17169	18346	16426	18346	16426
Permitted average input speed (at 20 °C ambient temperature) di			n _{1N}	rpm			30	00						2700			
Max. input speed			n _{1Max}	rpm			35	00						4000			
Mean no load running torque b)			-	Nm	12.2	10.5	9.8	9.1	8.2	7.2	4.1	2.3	2.2	3.8	3.6	2.6	2
(at n, = 3000 rpm and 20 °C gearbox temperature)			T ₀₁₂	in.lb	108.0	92.9	86.7	80.5	72.6	63.7	36.3	20.4	19.5	33.6	31.9	23.0	17.7
Max. backlash			j_t	arcmin		Stand	ard ≤ 3	/ Reduc	ed ≤ 2			St	andard	≤ 4 / Re	educed	≤ 3	
			_	Nm/arcmin			2	13						153			
Torsional rigidity b)			C _{t21}	in.lb/arcmin			18	85						1354			
			_	N							19500 4388						
Max. axial force ©			F _{2AMax}	lb,													
Max. tilting moment			M _{2KMax}	Nm in.lb		3059 27072											
Efficiency at full load	Efficiency at full load			%	95	93	91	87	80	76	89	89	89	78	74	78	74
			_	Nm/arcmin							2309 20435						
Tilting rigidity			C_{2K}	in.lb/arcmin													
Service life			L _n	h							> 20000)					
Weight				kg			63	3.0						64.6			
(incl. standard adapter plate)			m	lb _m			13	9.0						143.0			
Operating noise (at reference ratio and reference speed – ratio-specific values available in cymex®)			L _{PA}	dB(A)							≤ 70						
NA				°C							+90						
Max. permitted housing temperature				F							194						
Ambient temperature				°C							15 to +4	10					
Ambient temperature				F							5 to 104	1					
Lubrication					Lubricated for life												
Direction of rotation									In-	and out	put san	ne direc	tion				
Protection class											IP 65						
Metal bellows coupling (recommended product type – validate sizing with cymex®)									E	3CT-015	500AAX-	125.000)				_
Bore diameter of coupling on the application side				mm	X = 050.000 - 080.000												
				kgcm²	-	-	-	-	-	_	31.70	33.00	31.10	30.10	30.40	30.00	29.80
· ·						i l								0 2073 9 18346 2700 4000 4000 3.8 33.6 d ≤ 4 / R 153 1354 78 64.6 143.0 0 30.10 2 26.64			
Mass moment of inertia	K	38	$J_{\scriptscriptstyle 1}$	10 ⁻³ in.lb.s ²	-	-	-	-	-	-	28.05	29.21	27.52	26.64	26.90	26.55	26.37
Mass moment of inertia (relates to the drive)	K M	38 48	J,		- 50.02	- 40.63	- 38.73	- 39.60	- 37.14	- 37.47	28.05 46.40	29.21 47.70	27.52 45.80	26.64 44.80	26.90 45.10	26.55 44.70	

<sup>a) At max. 10 % M_{2KMax}
b) Valid for standard clamping hub diameter
c) Refers to center of the output shaft or flange
d) Please reduce input speed at higher ambient temperatures</sup>

See technical data sheet for available clamping hub diameters (mass moment of inertia). Dimensions available on request.

- ²⁾ Min./Max. permissible motor shaft length. Longer motor shafts are adaptable, please contact us. ³⁾ The dimensions depend on the motor.
- Smaller motor shaft diameter is compensated by a bushing with a minimum thickness of 1 mm.
 Output side
- 6) Standard clamping hub diameter

Basic Line gearbox overview

Product type		CP	CPS	СРК	CPSK	CVH	cvs
Version		MF	MF	MF	MF	MF / MT	MF / MT
D.: a	min. <i>i</i> =	3	3	3	3	7	7
Ratio ©	max. <i>i</i> =	100	100	100	100	40	40
Max. torsional backlash	Standard	≤ 12	≤ 12	≤ 13	≤ 15	≤ 15	≤ 15
[arcmin] ^{c)}	Reduced	-	-	-	-	-	-
Output shape							•
Smooth shaft		х	х	х	х	-	х
Shaft with key d		х	х	х	х	-	х
Splined shaft (DIN 5480)		-	-	-	-	-	-
Blind hollow shaft		-	-	-	-	-	-
Hollow shaft interface		-	-	-	-	х	-
Keyed hollow shaft		-	-	-	-	х	-
Flanged hollow shaft		-	-	-	-	-	-
Flange		-	-	-	-	-	-
System output		-	-	-	-	-	-
Output on both sides		-	-	-	-	х	х
Input type							
Motor-mounted		х	х	х	х	х	х
Self-contained version b)		-	-	-	-	-	-
Characteristic							
Flange with slotted holes		-	-	-	_	-	-
ATEX a)		-	-	-	-	-	-
Food-grade lubrication a) b)		х	х	х	х	х	х
Corrosion resistant a) b)		-	-	-	-	-	-
Optimized mass inertia a		-	-	-	-	-	-
System solutions							
Linear system (rack / pinion)		-	-	-	_	-	-
Servo actuator		-	-	-	-	-	-
Accessories (please refer to the product page	es for further o	ptions)					
Coupling		х	х	х	х	-	х
Shrink disc		_	_	_	_	х	_

<sup>a) Power reduction: technical data available on request
b) Please contact WITTENSTEIN alpha
c) In relation to reference sizes
d) Power reduction: Please use our sizing software cymex® for a detailed sizing – www.wittenstein-cymex.com</sup>

Value Line gearbox overview

Product type		NP	NPL	NPS	NPT	NPR	NPK	NPLK	NPSK	NPTK	NPRK	NVH	NVS	HDV
Version		MF / MA	MF / MA	MF / MA	MF / MA	MF / MA	MF	MF	MF	MF	MF	MF	MF	MF / MT
D :: a	min. <i>i</i> =	3	3	3	3	3	3	3	3	3	3	4	4	4
Ratio c)	max. <i>i</i> =	100	100	100	100	100	100	100	100	100	100	400	400	100
Max. torsional	Standard	≤ 8	≤ 8	≤ 8	≤ 8	≤ 8	≤ 11	≤ 11	≤ 11	≤ 11	≤ 11	≤ 6	≤ 6	≤ 10
backlash [arcmin] °	Reduced	-	-	-	-	-	-	-	-	-	-	-	-	-
Output type					•						•			
Smooth shaft		х	х	х	-	x	х	х	х	-	х	-	х	x
Shaft with key d		х	х	х	-	×	х	х	х	-	х	-	х	×
Splined shaft (DIN 5480	0)	-	х	×	-	х	-	×	х	-	×	-	-	-
Blind hollow shaft		-	-	-	-	-	-	-	-	-	-	-	-	-
Hollow shaft interface		-	-	-	-	-	-	-	-	-	-	х	-	-
Keyed hollow shaft		-	-	-	-	-	-	-	-	-	-	х	-	-
Flanged hollow shaft		-	-	-	-	-	-	-	-	-	-	-	-	-
Flange		-	-	-	х	-	-	-	-	х	-	-	-	-
System output		-	-	-	-	-	-	-	-	-	-	-	-	-
Output on both sides		-	-	-	-	-	-	-	-	-	-	х	х	-
Input type														
Motor-mounted		х	х	х	х	х	х	х	х	х	х	х	х	x
Self-contained version	b)	-	-	-	-	-	-	-	-	-	-	-	-	-
Characteristic														
Flange with slotted hole	es	-	-	-	-	x	-	-	-	-	х	-	-	-
ATEX a)		-	-	-	-	-	-	-	-	-	-	-	-	-
Food-grade lubrication	a) b)	х	х	х	х	х	х	х	х	х	х	х	х	х
Corrosion resistant a) b)		-	-	-	-	-	-	-	-	-	-	х	х	х
Optimized mass inertia	a)	-	-	-	-	-	-	-	-	-	-	-	-	-
System solutions														
Linear system (rack / pinion)		х	х	х	-	x	х	х	х	-	х	ı	х	-
Servo actuator		-	-	-	-	-	-	-	-	-	-	-	_	х
Accessories (please refer to the prode	uct pages for furt	her options)												
Coupling		х	х	х	х	х	х	х	х	-	х	-	х	-
Shrink disc		-	-	-	-	-	-	-	-	-	-	х	-	-

^{a)} Power reduction: technical data available on request ^{b)} Please contact WITTENSTEIN alpha

o In relation to reference sizes

^{d)} Power reduction: Please use our sizing software cymex[®] for a detailed sizing – www.wittenstein-cymex.com

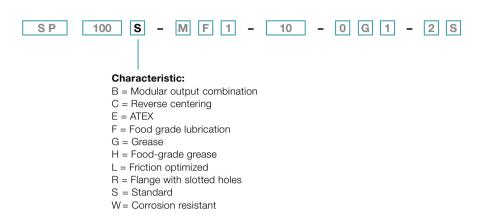
Advanced Line gearbox overview

		-	1	1	-		18	THE REAL PROPERTY.	10 10
Product type		SP⁺	SP+ HIGH SPEED	SP+ HIGH SPEED friction optimized	TP⁺	TP+ HIGH TORQUE	HG⁺	SK⁺	SPK+
Version		MF	МС	MC-L	MF	MA	MF	MF	MF
Catalog page		26	26	26	80	80	128	140	150
D-#- 0	min. i =	3	3	3	4	22	3	3	12
Ratio c)	max. i =	100	100	10	100	302.5	100	SK+ MF 140	10000
Max. torsional backlash	Standard	≤ 3	≤ 4	≤ 4	≤ 3	≤ 1	≤ 4	≤ 4	≤ 4
[arcmin] c)	Reduced	≤ 1	≤ 2	≤ 2	≤ 1	-	-	-	≤ 2
Output shape									
Smooth shaft		х	х	х	_	-	-	х	х
Shaft with key d)		х	х	х	-	-	-	х	х
Splined shaft (DIN 5480)		х	х	х	-	-	-	х	х
Blind hollow shaft		х	х	х	-	-	-	-	х
Hollow shaft interface		-	-	-	-	-	х	-	-
Keyed hollow shaft		-	-	-	_	-	-	-	-
Flanged hollow shaft		-	-	-	-	-	-	-	-
Flange		-	-	-	х	х	-	-	-
System output		-	-	-	x	x	_	-	-
Output on both sides		-	-	-	-	-	х	х	х
Input type									
Motor-mounted		х	x	х	x	x	x	x	х
Self-contained version b)		х	-	-	х	-	-	-	_
Characteristic									
Flange with slotted holes		х	-	-	_	-	-	-	-
ATEX a)		х	х	-	-	-	х	х	-
Food-grade lubrication a) b)		х	х	х	х	х	х	х	х
Corrosion resistant a) b)		х	х	х	х	х	х	х	х
Optimized mass inertia a)		х	х	х	х	х	-	-	-
System solutions			•						
Linear system (rack / pinion)		х	х	-	x	х	-	х	х
Servo actuator		х	-	-	х	х	-	-	-
Accessories (please refer to the product	pages for further	options)	_						
Coupling		х	х	х	×	х	_	х	х
Shrink disc		х	х	х	-	-	x	-	х
									_

<sup>a) Power reduction: technical data available on request
b) Please contact WITTENSTEIN alpha
c) In relation to reference sizes
d) Power reduction: Please use our sizing software cymex® for a detailed sizing – www.wittenstein-cymex.com</sup>

										1000000
тк∙	TPK⁺	TPK+ HIGH TORQUE	sc⁺	SPC+	TPC⁺	VH⁺	VS⁺	VT÷	DP+	HDP+
MF	MF	MA	MF	MF	MF	MF	MF	MF	MF / MA	MA
178	188	188	228	238	248	262	272	280	292	308
3	12	66	1	4	4	4	4	4	16	22
100	10000	5500	2	20	20	400	400	400	55	55
≤ 4	≤ 4	≤ 1.3	≤ 4	≤ 4	≤ 4	≤ 3	≤ 3	≤ 3	≤ 3	≤1
-	≤ 2	-	-	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 1	-
			1							
-	-	-	х	х	-	-	x	-	-	-
-	-	-	х	х	-	-	х	-	-	-
-	-	-	-	х	-	-	х	-	-	-
-	-	-	-	х	-	-	-	-	-	-
-	-	-	-	-	-	х	-	-	-	-
-	-	-	-	-	-	х	_	-	-	-
х	-	-	-	-	-	-	-	х	-	-
-	х	х	-	-	х	-	-	-	х	х
-	х	х	_	-	х	-	-	-	_	-
х	х	х	-	-	-	х	х	-	-	-
x	х	х	x	х	х	х	х	x	x	х
-	-	-	-	-	-	-	_	-	-	-
-	-	-	-	-	-	-	_	-	-	-
х	-	-	-	-	-	-	-	-	-	-
х	х	х	х	х	х	х	x	х	х	х
х	х	х	-	-	-	х	х	х	х	х
-	-	-	-	-	-	-	_	-	х	х
х	х	х	х	х	х	-	х	х	-	-
-	-	-	-	-	-	-	-	-	-	-
х	х	х	x	х	х	-	х	x	-	-
-	-	-	-	х	-	х		-	-	-
	_									

Premium Line gearbox overview



			-	3	100	3	1	
Product type		XP⁺	RP⁺	XPK⁺	RPK⁺	XPC⁺	RPC⁺	
Version		MF / MC	MF / MA	MF	MA	MF	MA	
	min. i =	3	22	12	48	4	22	
Ratio °	max. i =	100	220	1000	5500	20	55	
Max. torsional backlash	Standard	≤ 3	≤ 1	≤ 4	≤ 1.3	≤ 4	≤ 1.3	
[arcmin] ^{c)}	Reduced	≤ 1	-	≤ 2	-	≤ 2	-	
Output shape								
Smooth shaft		х	_	х	-	x	-	
Shaft with key d		х	-	х	-	х	-	
Splined shaft (DIN 5480)		х	-	х	-	х	-	
Blind hollow shaft		х	-	х	-	х	-	
Hollow shaft interface		-	-	-	-	-	-	
Keyed hollow shaft		-	-	-	-	-	-	
Flanged hollow shaft		-	-	-	-	-	-	
Flanged hollow shaft Flange		-	х	-	х	-	х	
System output		х	х	х	х	х	х	
Output on both sides		-	_	-	-	-	-	
Input type					•			
Motor-mounted		х	х	х	х	х	х	
Self-contained version b)		х	-	-	-	-	-	
Characteristic						,		
Flange with slotted holes		х	х	х	х	х	х	
ATEX a)		-	-	-	-	-	-	
Food-grade lubrication a) b)		х	х	х	х	х	х	
Corrosion resistant a) b)		-	_	-	-	-	_	
Optimized mass inertia a)		х	х	-	_	-	-	
System solutions								
Linear system (rack / pinion)		х	х	х	х	х	х	
Servo actuator		x	x	-	_	-	_	
Accessories (please refer to the product p	pages for further o	ptions)						
Coupling		х	_	х	-	х	-	
Shrink disc		х	-	х	-	х	-	

a) Power reduction: technical data available on request

<sup>Please contact WITTENSTEIN alpha
In relation to reference sizes
Power reduction: Please use our sizing software cymex® for a detailed sizing – www.wittenstein-cymex.com</sup>

Overview of gearbox variants

Explanation of variants deviating from the standard:

B = Modular output combination

An additional backward output type is available for hypoid gearboxes. See page 353 for details.

C = Reverse centering

To save space, this variant offers greater flexibility in mounting the product on the machine.

E = ATEX

Devices bearing the Ex symbol comply with EU Directive 2014/34/EN (ATEX) and are approved for use in defined explosion-prone zones. Performance data is limited and can be found in the operating instructions.

F = Food grade lubrication

These products are available with food-grade lubrication and can therefore be used in the food industry. Please note that the torque ratings in the catalog are reduced by 20 % (excluding V-Drive).

G = Grease

This variant allows you to lubricate selected products with grease instead of oil. Please note that the torque ratings in the catalog are reduced by 20 %.

H = Food-grade grease

This variant allows you to lubricate selected products with food-safe grease instead of oil. Please note that the torque ratings in the catalog are reduced by 40%.

L = Friction optimized

A friction-optimized variant is available for HIGH SPEED products.

Design changes allow the products to be used particularly in applications with high temperature sensitivity, high nominal speeds or long duty cycles.

R = Flange with slotted holes

This output type is designed for linear applications with rack and pinion or belt pulley. Integrated slotted holes enable easy positioning of the pinion or simple tensioning of the belt.

W = Corrosion resistant

These products can be used in corrosive environments, e.g. in the food industry, pharmaceutical industry or packaging industry. All external product areas have been designed to avoid corrosion. In addition the products are provided with food-grade grease lubrication. Please note that the torque ratings in the catalog are reduced by 20 % (excluding V-Drive).

alpha Advanced Linear Systems

Strong performance in the advanced segment

Advanced Linaer Systems are adapted to applications with average to high demands in terms of smooth running, positioning accuracy and feed force. Different gearbox versions and options such as HIGH TORQUE or HIGH SPEED can be selected to utilize the most appropriate system for the application. Typical fields of application include wood, plastic and composite machining, machining centers and automation.

The alpha preferred linear system – The best of each segment

Our preferred linear systems in the Advanced Segment are always comprised of the perfect combination of gearbox, pinion, rack and lubrication system. The systems are optimized to achieve the required feed force, feed speed, rigidity and degree of utilization of the individual components.

For further information, refer to our alpha Linear Systems catalog and our website:

www.wittenstein-alpha. com/linear-systems

For a wide range of applications

Linear systems from WITTENSTEIN alpha are suitable for a wide range of applications and industries. New standards and advantages have been achieved in the following areas:

- · Smooth operation
- · Positioning accuracy
- · Feed force
- · Power density
- · Rigidity
- · Easy installation
- · Design options
- · Scalability

Together with a comprehensive range of services, we pledge to support you from the initial concept to the design, installation and commissioning phase. We will also ensure a consistent supply of spare parts.

Your benefits at a glance

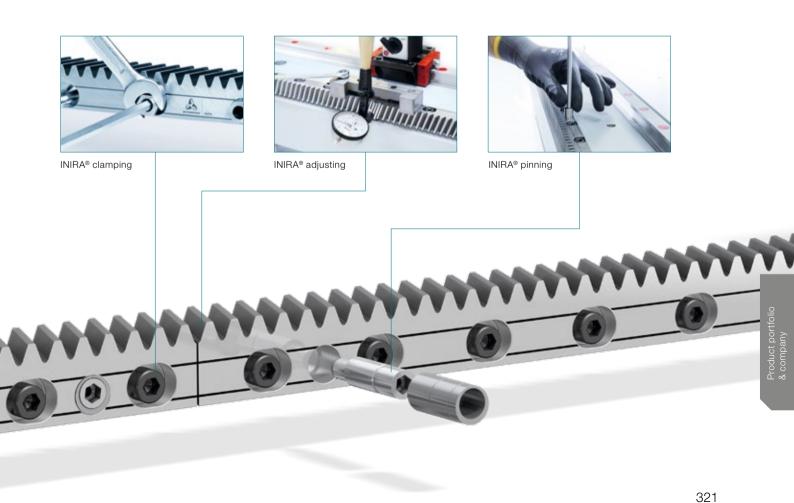
Perfectly adapted linear systems available with planetary, right-angle and worm gearboxes or as an actuator

Optionally with INIRA®

Large individual configuration range due to numerous pinion/gearbox combinations

INIRA®: The revolution in rack assembly

Simply scan the QR code using your smartphone to see INIRA® in action.


INIRA® combines our existing innovative concepts for the simple, safe and efficient installation of racks. INIRA® clamping, INIRA® adjusting and INIRA® pinning have already made the assembly process much faster, more accurate and more ergonomic. Available for the Advanced and Premium Linear Systems.

INIRA® clamping: Simply faster and more ergonomic Previously, enormous effort was required to clamp racks to the machine bed using screw clamps. INIRA® clamping integrates the clamping device in the rack. The rack incorporates a mounting sleeve which is guided over the head of the fastening screw to ensure quick and ergonomic clamping.

INIRA® adjusting: Simply safer and more precise In combination with INIRA® clamping, INIRA® adjusting is the ideal solution for perfectly adjusting the transition between two rack segments. The innovative setting tool can adjust the transition extremely reliably and precisely, accurate to the micrometer.

INIRA® pinning: Simply better and more efficient The previous method used for pinning racks was extremely time-consuming. Precision bores have to be drilled and the chips generated must be carefully removed from the assembly. INIRA® pinning now offers a completely new solution for the chipless pinning of racks, which reduces installation times

considerably (time spent on each rack ~ 1 min).

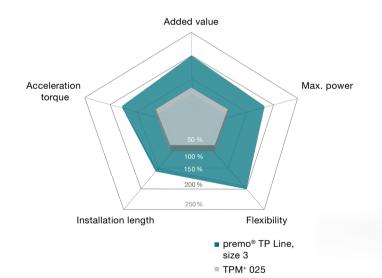
Precision meets motion = premo® by WITTENSTEIN alpha

premo® is a new, powerful servo actuator platform that combines absolute precision with perfect movement. The central idea behind this first fully scalable servo actuator platform is uncompromising flexibility from the viewpoint of the user. Motors and gearboxes with application-related graduated performance characteristics can be configured modularly to individual servo actuators. The result is a

highly versatile modular system with customizable power, designed for a wide variety of applications. The core of the servo actuator is a torsionally rigid precision gearbox with low backlash and excellent torque density combined with the equally powerful, permanent magnet servo motor with a split winding that guarantees low cogging and minimal velocity ripple.

premo® - clearly superior in performance

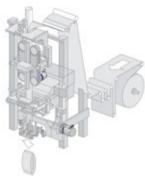
- Higher machine performance thanks to higher acceleration torque
- High torque density combined with a compact design allow for the realization of higher performance machines with significant space saving
- · Improved connectivity to next generation controllers from leading system providers through the use of digital feedback (EnDat 2.2, DSL, HIPERFACE DSL®, DRIVE-CLiQ)
- · Compatibility for high bus voltages up to 750 V DC
- · Reduced wiring requirement through single-connector technology
- · Improved reliability and safety through the use of more powerful brakes and SIL 2 encoders

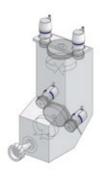

premo® SP Line

Product highlights

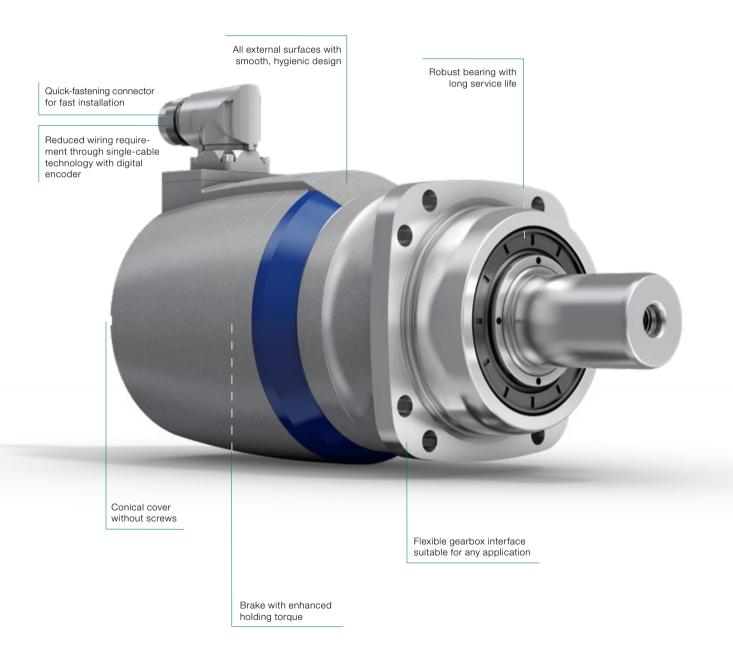
Optimized power density for greater energy efficiency and productivity

Flexible mechanical and electrical interfaces for high scalability


Variety of options for individually upgrading the basic configuration


premo® application examples

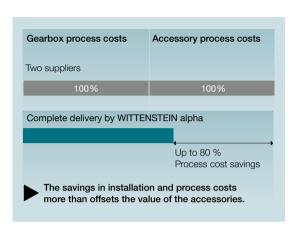
Handling portal premo® SP Line


Fill and Seal machine premo® TP Line

Milling cutter for a machining center premo® XP Line

Typical fields of application and industry solutions

- · Delta robot (axes 1-3, swivel axis)
- · Handling portal (Z-axis, swivel/rotating axis)
- · Machine tool reaming (rotating axes A-C, tool changer)
- · Fill and Seal Machine (incl. jaw stroke, sealing jaw, blade)
- · Folding carton packaging (incl. assembly/folding, filling valve)
- · Plastic thermoform (tool axis)



Accessories – smart additions for intelligent performance

Gearboxes, accessories and consulting from a single source

WITTENSTEIN alpha drive solutions: Perfectly matched From a single source Overall responsibility Consultation

Optimization of your added value chain Use the combination of gearbox and accessories in a complete package to streamline your internal processes.

Shrink disks

Shrink disks are frictional hub / shaft connections. Together with our hollow shaft or mounted shaft gearboxes for mounting directly on load shafts, machines can be designed to take up a minimal installation space.

The benefits:

- · Simple mounting and removal
- \cdot Quick selection, easy and convenient
- · Optional: corrosion resistant version

Preferred shrink disk series

To view a wide range of nickel-plated, stainless steel and other shrink disks as well as all the relevant technical data and dimensions, visit our homepage

www.wittenstein-alpha.com

Couplings

Couplings are used for compensating misalignment during assembly and material-related heat expansion

Compensation for shaft misalignment

Metal bellows coupling

- Compensation for shaft misalignment
- · Completely backlash free
- · Corrosion resistant version available as an option (BC2, BC3, BCT)
- · High torsional rigidity

Elastomer coupling

- · Compensation for shaft misalignment
- · Completely backlash free
- · Selectable torsional rigidity/damping
- · Compact design
- · Extremely simple installation (plug-in)

Torque limiter

- · Compensation for shaft misalignment
- \cdot Completely backlash free
- · Precise, preset overload protection (switch-off in 1 3 ms)
- · Precise repeat accuracy
- · Just one protection element per axis

Preferred coupling series

Preferred series are defined for the relevant gearbox segments to make selection easier. Preferred couplings are defined based on the maximum torque that the gearbox can transmit. Standard industrial conditions for the number of cycles (1000/h) and ambient temperature were adopted.

Please note that the coupling load is based on the torque that the gearbox can transmit and not the torque in your application. We recommend using our cymex®5 design software to create a more detailed design. (www.wittenstein-cymex.com)

For more coupling types, please visit www.wittenstein-alpha.com

Support at each interaction stage

With the WITTENSTEIN alpha service concept, we are also setting new standards in the field of customer support.

Global presence

Our global consultation network will help you overcome your complex challenges through our extensive experience, a variety of design tools and individual engineering services.

Speed counts

Our speedline® team guarantees fast response times in the area of logistics. We provide on-site support during the installation and commissioning of mechanical systems to give you a sustained competitive edge.

Personal consultation

Our highly qualified and committed expert personnel will accompany you throughout the entire product lifecycle - around the clock. When it comes to customer support, you can count on us!

Design

Consultation
CAD POINT
SIZING ASSISTANT
Sizing software cymex®
Engineering

Installation

speedline® delivery Installation on-site Operating & installation instructions Pick-up & return service

We are happy to advise you:

24 h service hotline: +49 7931 493-12900

No matter where you need us:

A comprehensive sales and service network provides quick availability and competent support worldwide.

Maintenance

24 h service hotline Maintenance and inspection Repair cymex® statistics Modernization

Training

Product training Sizing training Installation training Service training

Support at each interaction stage

Design

Whatever your requirements are: we offer the right design methodology. Use the CAD POINT to gain easy access to CAD files, the SIZING ASSISTANT for creating simple

designs, cymex® 5 for precise dimensioning and our engineering service for individual solutions.

Consultation

- · Personal contact on-site
- · Professional application calculations and drive design create the best solutions

Engineering

Catalog gearboxes:

- · Advanced software tools for accurate calculation, simulation and analysis of the drive train
- · Optimization of your productivity and reduction in development costs

Special gearboxes:

- · Gearing design and development
- · Development and production of special gearboxes
- · Send all inquiries to: sondergetriebe@wittenstein.de

CAD POINT

- · 3D data of selected solution
- · Online comparison with motor geometry
- · Transparent and simple selection of required components

SIZING ASSISTANT

- · Efficient online design within seconds
- · Convenient comparison function
- · Automatic geometry adjustment

cymex® 5 sizing software

- · Dimensioning, design and evaluation of the entire drive train
- · Reliable, efficient design
- · Optimization of drive system

Installation

All delivered products are perfectly matched to your application environment and fully operational right away.

Our service experts support you in the installation and commissioning of complex mechatronic systems, guaranteeing maximum availability of your plant.

speedline® delivery

Tel. +49 7931 493-10444

- · Delivery of standard series in 24 or 48 hours ex works*
- · Outstanding flexibility for fast deliveries at short notice

Installation on-site

- · Professional installation
- · Optimal integration of the system in your application
- · Explanation of the drive function

Operating and installation instructions

- · Detailed explanations of how to use the product
- · Motor installation videos
- · Assembly videos on rack and pinion system

Pick-up and return service

- · Cost savings through minimization of downtimes
- · Professional logistics organization
- · Reduction of transport risks through customized, direct pick-up and delivery

^{*} Non-binding delivery time depending on part availability.

Support at each interaction stage

Maintenance

WITTENSTEIN alpha guarantees fast repairs of the highest quality and precision – with short throughput times and intensive support. In addition, we will provide you with information about various measurements, material

analyses and condition monitoring inspections. You can rely on short response times, unbureaucratic processing and individual support.

24 h service hotline

Tel. +49 7931 493-12900

- · Available round the clock
- · Personal, prompt service for resolving time-critical maintenance issues

Maintenance and inspection

- · Documentation regarding condition and expected service life
- · Maintaining required state
- · Customized maintenance schedules

Repair

- · Restoring to required state
- · Short throughput times
- · Immediate response in time-critical situations

cymex® statistics

- · Systematic field data acquisition
- · Reliability calculations (MTBF)
- · Customized evaluations

Modernization

- · Professional retrofitting
- · Reliable compatibility testing of existing solutions

Training

Discover how our products function and how they can add value to your application. We offer you training courses at our premises or on-site at your plant. Benefit from

practice-oriented learning methods and a highly skilled team of trainers.

Product training

Greater knowledge enables greater achievement. We will be pleased to share our expert knowledge with you: Profit from our many years of experience and learn more about the product portfolio of WITTENSTEIN alpha.

Sizing training

Become a design expert! We will provide you with training courses on our design software, adapted to your requirements. Whether for beginners or experts, for occasional or regular users – we adapt our training course to your wishes and requirements.

Installation training

We offer you individual training courses on-site for your system application of selected linear axes as well as professional installation.

Service training

Participation in a service training course is a prerequisite for sourcing spare parts at the parts list level. We offer you training courses at our premises or on-site at your plant. Moreover, we regularly host maintenance workshops at which the participants are instructed in safe handling during mounting of the motor to the gearbox as well as the independent replacement of wearing parts and gearbox assemblies.

The WITTENSTEIN group – The company and its fields of business

With approximately 2,900 employees worldwide, WITTENSTEIN SE stands for innovation, precision and excellence in the world of mechatronic drive technology, both nationally and internationally. The group is active in seven innovative fields of business. Furthermore, WITTENSTEIN SE is represented by some 60 subsidiaries in around 40 countries in all important technology and sales markets worldwide.

Our fields of expertise

We provide know-how for a host of different sectors:

- · Machine and plant construction
- · Software development
- · Aerospace
- · Automotive & E-mobility
- · Energy
- · Oil & Gas Exploration and Production
- · Medical technology
- · Measurement and testing technology
- · Nanotechnology
- · Simulation

The WITTENSTEIN Group

alpha

WITTENSTEIN alpha GmbH High-precision servo drives and linear systems

cyber motor

WITTENSTEIN cyber motor GmbH Highly dynamic servo motors and drive electronics

galaxie

WITTENSTEIN galaxie GmbH Superior gearboxes and drive systems

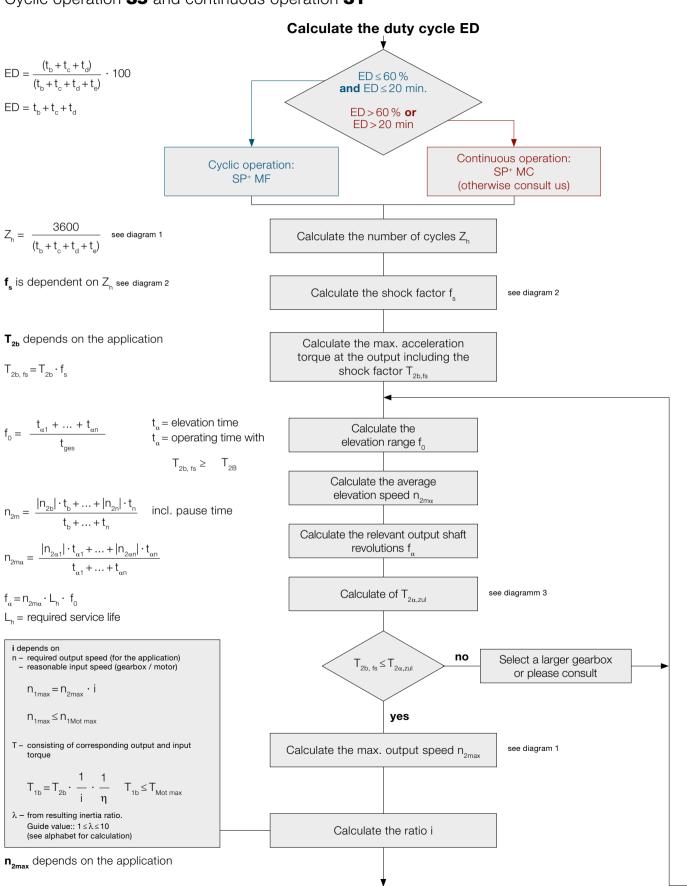
motion control

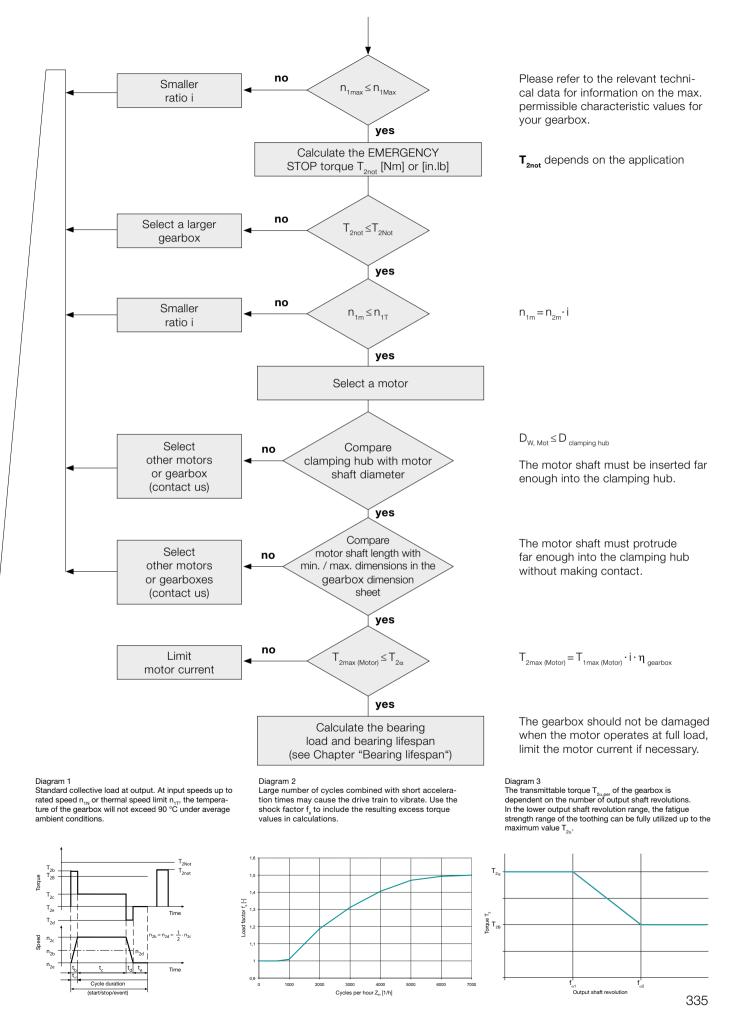
WITTENSTEIN motion control GmbH Customized linear and rotary servo systems

aerospace & simulation

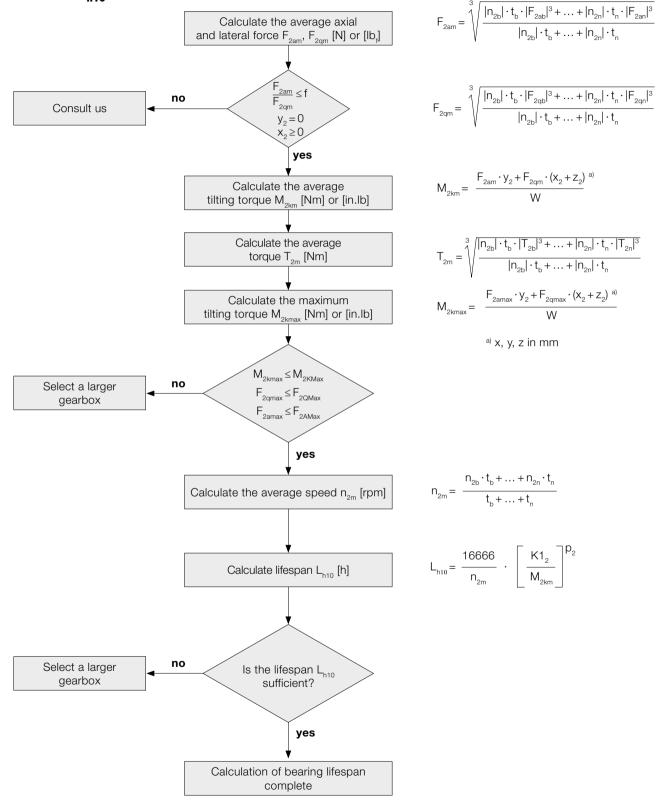
WITTENSTEIN aerospace & simulation GmbH Mechatronic drive systems for aerospace & simulation

attocube systems AG Nanoprecision drive and measurement technology solutions

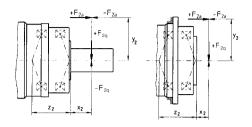



baramundi software AG Secure management of IT infrastructure in offices and production areas

Gearbox general - Detailed sizing


Cyclic operation \$5 and continuous operation \$1

Gearbox general - Detailed sizing


Bearing lifespan L_{h10}

	metric	inch
W	1000	1

	TP+/TPK+	SP+/SPK+
f	0.37	0.40

Example with output shaft and flange:

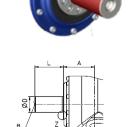
SP+/SP	K+/SPC+	060	075	100	140	180	210	240
_	[mm]	42.2	44.8	50.5	63.0	79.2	94.0	99.0
Z ₂	[in]	1.66	1.76	1.99	2.48	3.12	3.70	3.90
V1	[Nm]	795	1109	1894	3854	9456	15554	19521
K1 ₂	[in.lb]	7036	9815	16762	34108	83686	137653	172761
p ₂		3.33	3.33	3.33	3.33	3.33	3.33	3.33

TP+/TP		004	010	025	050	110	300	500	2000	4000
_	[mm]	57.6	82.7	94.5	81.2	106.8	140.6	157	216	283
Z_2	[in]	2.27	3.26	3.72	3.20	4.21	5.48	6.12	8.50	11.1
V-1	[Nm]	536	1325	1896	4048	9839	18895	27251	96400	184000
K1 ₂	[in.lb]	4744	11726	16780	35825	87075	167220	241171	853140	1628400
p ₂		3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33

HDP⁺		010	025	050
_	[mm]	90.4	99.1	83.5
Z ₂	[in]	3.56	3.90	3.29
V-1	[Nm]	1325	1896	4048
K1 ₂	[in.lb]	11726	16780	35825
p ₂		3.33	3.33	3.33

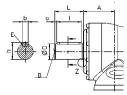
TK+/SK+/HG+/SC+/VH+/VS+/VT+: Calculation using cymex®.

Please contact us for further information.


Hypoid gearboxes - Detailed sizing

Gearbox types and sizes			TK+ 004 SK+ 060 HG+ 060	SPK+ 075 TPK+ 010 TPK+ 025 MA	TK+ 010 SK+ 075 HG+ 075	SPK+ 100 TPK+ 025 TPK+ 050 MA	
Dimensions of rearward drive							
Solid shaft:	diameter	ØD _{k6}	mm	16	16	22	22
Solid Shart:	length	L	mm	28 ±0.15	28 ±0.15	36 ±0.15	36 ±0.15
Hollow shaft inter	face outer diameter	ØD _{h8}	mm	18	18	24	24
Hollow shaft inter	face inner diameter	ød _{h6}	mm	15	15	20	20
Hollow shaft inter	face length	L	mm	14	14	16	16
Distance from inp	out axis	А	mm	42.9	42.9	52.6	52.6
		1	mm	25	25	32	32
Key dimensions (E = key as per D	INI 6995	b _{h9}	mm	5	5	6	6
sheet 1, form A)	IIN 0000,	а	mm	2	2	2	2
		h	mm	18	18	24.5	24.5
Output shaft threa	aded bore	В		M5x12.5	M5x12.5	M8x19	M8x19
Permissible loa	ad of rearward dri	ive					
Max. acceleration torque c)		T _{3α,zul}		$= T_{2\alpha,zul} \text{ on the}$ condition that $T_{2b,fs} + T_{3b,fs} \leq T_{2\alpha,zul}$	Please contact us	$= T_{2\alpha,zul} \text{ on the}$ condition that $T_{2b,fs} + T_{3b,fs} \leq T_{2\alpha,zul}$	Please contact us
Nominal output to	orque c)	T _{3N}		= T _{2N} - T _{2n}	r lease contact us	= T _{2N} - T _{2n}	r icase contact as
EMERGENCY ST	OP torque c)	T _{3Not}		= T _{2Not} - T _{2not}		= T _{2Not} - T _{2not}	
Max. axial force b)	F _{3Amax}		1500	1500	1800	1800
Max. lateral force	b)	F _{3Qmax}		2300	2300	3000	3000
Max. tilting torque	е	M _{3Kma}	ς.	60	60	100	100
Calculation of	average tilting tor	que at	the real	ward drive			
Factor for tilting to	orque calculation	Z ₃	mm	11.9	11.9	15.6	15.6
Distance between and center of gea		y ₃	mm	Application-dependent			
Distance betweer and shaft collar	n lateral force	X ₃	mm	Application-dependent			

a) Connection via shrink discs


Rearward drive:

$M_{3k} = F_{3a} \cdot y_3 + F_{3q} \cdot (x_3 + z_3)$

Smooth shaft Shaft with key

b) Refers to center of shaft

c) See also page 336, "Detailed dimensioning - Gearbox"

TK⁺ 025 SK⁺ 100 HG⁺ 100	SPK+ 140 TPK+ 050 TPK+ 110 MA	TK* 050 SK* 140 HG* 140	SPK+ 180 SPK+ 240 TPK+ 110 TPK+ 500 TPK+ 300 MA	TK+ 110 SK+ 180 HG+ 180	SPK⁺ 210 TPK⁺ 300 TPK⁺ 500 MA
32	32	40	40	55	55
58 ±0.15	58 ±0.15	82 ±0.15	82 ±0.15	82 ±0.15	82 ±0.15
36	36	50	50	68	68
30	30	40	40	55	55
20	20	25	25	25	25
63.5	63.5	87	87	107.8	107.8
50	50	70	70	70	70
10	10	12	12	16	16
4	4	5	5	6	6
35	35	43	43	59	59
M12x28	M12x28	M16x36	M16x36	M20x42	M20x42
$= T_{2\alpha,zul} \text{ on the}$ condition that $T_{2b,fs} + T_{3b,fs} \leq T_{2\alpha,zul}$	Please contact us	$= T_{2\alpha,zul} \text{ on the}$ condition that $T_{2b,fs} + T_{3b,fs} \le T_{2\alpha,zul}$	Please contact us	$= T_{2\alpha,zul} \text{ on the}$ condition that $T_{2b,fs} + T_{3b,fs} \le T_{2\alpha,zul}$	Please contact us
т т			1 loado domade do		r iodos comact do
$= T_{2N} - T_{2n}$	i lease contact as	= T _{2N} - T _{2n}		$= T_{2N} - T_{2n}$	
$= I_{2N} - I_{2n}$ $= T_{2Not} - T_{2not}$. Ticase contact as	$= T_{2N} - T_{2n}$ $= T_{2Not} - T_{2not}$		$= I_{2N} - I_{2n}$ $= T_{2Not} - T_{2not}$	
	2000		9900		4000
= T _{2Not} - T _{2not}		= T _{2Not} - T _{2not}	9900 9500	= T _{2Not} - T _{2not}	4000 11500
= T _{2Not} - T _{2not} 2000	2000	= T _{2Not} - T _{2not} 9900		= T _{2Not} - T _{2not} 4000	
$= T_{2Not} - T_{2not}$ 2000	2000	= T _{2Not} - T _{2not} 9900 9500	9500	= T _{2Not} - T _{2not} 4000 11500	11500
= T _{2Not} - T _{2not} 2000 3300	2000	= T _{2Not} - T _{2not} 9900 9500	9500	= T _{2Not} - T _{2not} 4000 11500	11500
= T _{2Not} - T _{2not} 2000 3300 150	2000 3300 150	= T _{2Not} - T _{2not} 9900 9500 580	9500 580 20	= T _{2Not} - T _{2not} 4000 11500 745	11500 745

Worm gearboxes - Detailed sizing

A: Simplified sizing for servo motors based on the maximum motor torque: $\mathbf{M}_{max} * \mathbf{i} \leq \mathbf{T}_{2\alpha}$

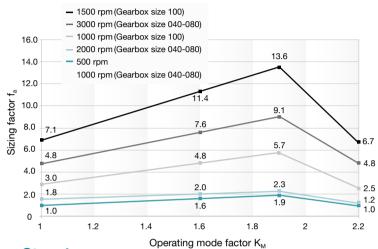
B: Sizing based on the application

Step 1:

Determine the application data

$$T_{2b} =$$
_____[Nm] $n_{1n} =$ _____[rpm]

Step 2:


Determine the operating mode factor $K_{M} =$

Typical applications	Cycle	Torque characteristic	Operating mode factor K _M
Format changing, e.g. in packaging machines, drives for processing equipment, actuators etc.	S5 operation: Low duty cycle Small number of cycles Low dynamics	T _{2b} t ^z t	1.0
Tool changers with low dynamics, pick & place gantry axes, tire building machines etc.	S5 operation: Medium duty cycle Small number of cycles Medium dynamics	T _{2b} t ² t	1.6
Linear axes in plasma, laser or water jet cutters, portals, tool changers with high dynamics	S5 operation: Medium duty cycle Medium number of cycles High dynamics	T _{2b} t ^z t	1.9
Roller drives in printing presses, star drives in rackers etc.	S1 operation: High duty cycle	T _{2b} t t	2.2

cymex® 5 also allows sizing calculations for other applications / cycles!

Step 3:

Determine the sizing factor f_a with the operating mode factor K_M $f_a =$

Step 4:

Compare the equivalent application torque with the maximum gearbox T_{2a} (see table, Step 5)

$$T_{2_{eq}} = f_a * T_{2b} \le T_{2\alpha}$$
 $T_{2_{eq}} = \underline{\qquad} * \underline{\qquad} \le T_{2\alpha}$
 $T_{2_{eq}} = \underline{\qquad} [Nm] \le \underline{\qquad} [Nm]$

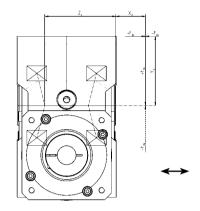
We recommend using a vent screw for duty cycles \geq 60 %, longer than 20 min (S1 operation) and n1N \geq 3000 rpm.

Step 5: Quick selection of the technical data

					V-Drive Advanced		
			040	050	063	080	100
Ratio	i				4 - 400		
Maximum torque ⁽³⁾	_	Nm	74-106	165-204	319-372	578-785	1184-1505
	in.lb	655-938	1460-1805	2823-3292	5115-6947	10478-13319	
Max. input speed	n _{1max}	rpm	6000	6000	4500	4000 / 4500 ^{b)}	3500 / 4000 ^{b)}
Many Johanni Farra	_	N	2400	3800	6000	9000	14000
Max. lateral force	F _{2QMax}	lb _f	540	855	1350	2025	3150
Operating noise (with n, =3000 rpm no load)	L _{PA}	dB(A)	≤ 54	≤ 62	≤ 64	≤ 66	≤ 70
Max. torsional backlash	j_t	arcmin	≤ 3	≤ 3	≤ 3	≤ 3	≤ 3
Service life (For calculation see "Information")	L _h	h	> 20000	> 20000	> 20000	> 20000	> 20000

a) The maximum torques depend on the ratio.

b) First value for single-stage version, second value for two-stage version.

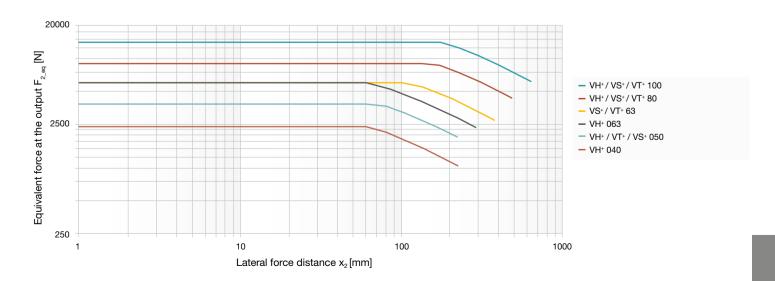

Account must be taken of the lateral and axial forces at the output:

Please also carry out steps 6 and 7 if forces are present at the output (e.g. if timing belt pulleys, pinions or levers are mounted there).

Step 6 (if external forces are present):

Determine the forces acting on the output and check the boundary conditions

Lateral force $F_{2q} =$ [N] Lateral force distance $x_2 =$ [mm] Axial force $F_{2a} =$ [N] Axial force distance $y_2 =$ [mm] (required if F_{2a} is present)


Conditions if axial force F_{2a} is present:

1.
$$F_{2a} \le 0.25 * F_{2q} \Rightarrow (_ \le 0.25 * _) \square$$
 Met \square Not met: Sizing with cymex® 5 2. $y_2 \le x_2 \Rightarrow (_ \le)$ \square Met \square Not met: Sizing with cymex® 5

Step 7:

Determine the maximum equivalent force acting on the output $F_{2 \text{ eq}}$

$$\begin{aligned} \mathbf{F_{2_eq}} &= & \mathbf{F_{2q}} + \mathbf{0.25} * \mathbf{F_{2a}} \leq \mathbf{F_{2QMax}} & \text{(F}_{2QMax} \text{ can be determined from the diagram below)} \\ \mathbf{F_{2_eq}} &= & & & & & & & & & \\ \end{aligned}$$

$$\mathbf{F_{2_eq}} &= & & & & & & & & & & & \\ \end{aligned}$$

$$\mathbf{F_{2_eq}} &= & & & & & & & & & & \\ \end{aligned}$$

$$\mathbf{Met} \quad \Box \quad \mathbf{Not \ met: Sizing \ with \ cymex} \in \mathbf{5}$$

Glossary – the alphabet

Adapter plate

WITTENSTEIN alpha uses a system of standardized adapter plates to connect the motor and the gearbox, making it possible to mount a WITTENSTEIN alpha gearbox to any desired motor without difficulty.

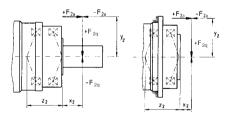
Angular minute

A degree is subdivided into 60 angular minutes (= 60 arcmin = 60').

Example:

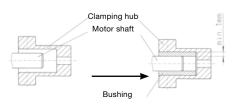
If the torsional backlash is $j_{\rm t}=1$ arcmin, the output can be turned 1/60°. The repercussions for the application are determined by the arc length:

 $b = 2 \cdot \pi \cdot r \cdot \alpha^{\circ} / 360^{\circ}$.


Example:

A pinion with a radius r = 50 mm mounted on a gearbox with torsional backlash $j_t = 3$ arcmin can be turned b = 0.04 mm.

Axial force (F_{2AMax})


The axial force acting on a gearbox runs parallel to its output shaft or perpendicular to its output shaft. It may be applied with axial offset via a lever arm y_2 under certain circumstances, in which case it also generates a bending moment. If the axial force exceeds the permissible catalog values (max. axial force $F_{\rm 2AMax}$), additional design features (e.g. axial bearings) must be implemented to absorb these forces.

Example with output shaft and flange:

Bushing

If the motor shaft diameter is smaller than the \rightarrow clamping hub, a bushing is used to compensate the difference in diameter. The bushing must have a minimum thickness of 1 mm and a motor shaft diameter of 2 mm.

CAD POINT

Performance data, dimension sheets and CAD data for all types of gearbox can be found online in our CAD POINT together with comprehensive documentation of the selection.

(www.wittenstein-cad-point.com)

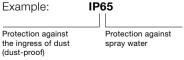
Clamping hub

The clamping hub ensures a frictional connection between the motor shaft and gearbox. A → bushing is used as the connecting element if the motor shaft diameter is smaller than that of the clamping hub. Optionally, a positive connection via a parallel key is also possible.

Continuous operation (S1)

Continuous operation is defined by the \rightarrow duty cycle. If the duty cycle is greater than 60% and / or longer than 20 minutes, this qualifies as continuous operation. \rightarrow Operating modes

Cyclic operation (S5)


Cyclic operation is defined via the \rightarrow duty cycle. If the duty cycle is less than 60% and shorter than 20 minutes, it qualifies as cyclic operation (\rightarrow operating modes).

cymex®

cymex® is the calculation software developed by our company for dimensioning complete drive trains. The software enables the precise simulation of motion and load variables. The software is available for download from our website (www.wittenstein-cymex. com). We can also provide training to enable you to make full use of all the possibilities provided by the software.

Degree of protection (IP)

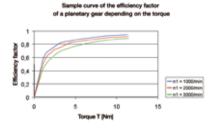
The various degrees of protection are defined in DIN EN 60529 "Degrees of protection offered by enclosure (IP code)". The IP degree of protection (International Protection) is represented by two digits. The first digit indicates the protection against the ingress of impurities and the second the protection against the ingress of water.

Duty cycle (DC)

The cycle determines the duty cycle DC. The times for acceleration $(t_{\rm b})$, constant travel if applicable $(t_{\rm c})$ and deceleration $(t_{\rm d})$ combined yield the duty cycle in minutes. The duty cycle is expressed as a percentage with inclusion of the pause time t.

DC [%] =
$$\frac{t_{b} + t_{c} + t_{d}}{t_{b} + t_{c} + t_{d} + t_{e}} \cdot 100 \frac{\text{Motion duration}}{\text{Cycle duration}}$$

DC [min] = $t_b + t_c + t_d$


Emergency stop torque (T_{2Not})

The Emergency stop torque $T_{\rm 2Not}$ is the maximum permissible torque at the gearbox output and must not be reached more than 1000 times during the life of the gearbox. It must never be exceeded!

Efficiency (η)

Efficiency [%] η is the ratio of output power to input power. Power lost through friction reduces efficiency to less than 1 or 100 %.

$$\eta = P_{\text{off}} / P_{\text{on}} = (P_{\text{on}} - P_{\text{loss}}) / P_{\text{on}}$$

WITTENSTEIN alpha always measures the efficiency of a gearbox during operation at full load. If the input power or torque are lower, the efficiency rating is also lower due to the constant no-load torque. Power losses do not increase as a result. A lower efficiency is also expected at high speeds (see illustration).

Ex symbol

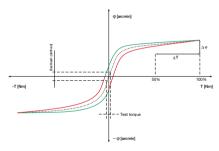
Devices bearing the Ex symbol comply with EU Directive 94 / 9 / EC (ATEX) and are approved for use in defined explosion-hazardous zones.

Detailed information on explosion groups and categories, as well as further information on the relevant gearbox are available upon request.

Food-grade lubrication (F)

These products are designed with foodgrade lubrication and can therefore be used in the food industry. Note the reduced torques compared to the standard products. (V-Drive excluded). The exact torques can be found in cymex® 5 or CAD POINT.

HIGH SPEED (MC)


The HIGH SPEED version of our gearbox has been specially developed for applications in continuous operation at high input speeds, e.g. as found in the printing and packaging industries.

HIGH TORQUE (MA)

WITTENSTEIN alpha gearboxes are also available in a HIGH TORQUE version. These gearboxes are particularly suited to applications requiring extremely high torques and maximum stiffness.

Hysteresis curve

The hysteresis is measured to determine the torsional rigidity of a gearbox. The result of this measurement is known as the hysteresis curve.

If the input shaft is locked, the gearbox is continuously loaded and relieved at the output in both directions up to a defined torque. The torsional angle is plotted against the torque. This yields a closed curve from which the → torsional backlash and → torsional rigidity can be calculated.

Jerk (j)

Jerk is derived from acceleration and is defined as the change in acceleration within a unit of time. The term impact is used if the acceleration curve changes abruptly and the jerk is infinitely large.

Lateral force (F_{2QMax})

The max. lateral force $F_{\rm 2CMax}$ [N] is the force component acting at right angles to the output shaft or parallel to the output flange. It acts perpendicular to the \rightarrow axial force and can assume an axial distance of x_2 in relation to the shaft nut or shaft flange, which acts as a lever arm. The lateral force produces a bending moment (see also \rightarrow axial force).

Mass inertia ratio (λ = Lambda)

The mass inertia ratio λ is the ratio of external inertia (application side) to internal inertia (motor and gearbox side). It is an important parameter determining the controllability of an application. Accurate control of dynamic processes becomes more difficult with differing mass moments of inertia and as λ becomes greater. WITTENSTEIN alpha recommends that a guideline value of $\lambda < 5$ is maintained. A gearbox reduces the external mass moment of inertia by a factor of $1/i^2$.

$$\lambda = \frac{J_{extern}}{J_{intern}}$$

J reduced externally at input:

$$J'_{\text{external}} = J_{\text{external}} / i^2$$

Simple applications ≤ 10 Dynamic applications ≤ 5 Highly dynamic applications ≤ 1

Mass moment of inertia (J)

The mass moment of inertia *J* [kg/cm²] is a measurement of the effort applied by an object to maintain its momentary condition (at rest or moving).

Mesh frequency (f_{\cdot})

The mesh frequency may cause problems regarding vibrations in an application, especially if the excitation frequency corresponds to a intrinsic frequency of the application. The mesh frequency can be calculated for planetary gearboxes from WITTENSTEIN alpha (exception: gearboxes with ratio i = 8) using the formula $f_7 = 1.8 \cdot n_9$ [rpm] and on planetary gearboxes from WITTENSTEIN alpha, is independent of the ratio. If it does indeed become problematic, the intrinsic frequency of the system can be changed or another gearbox (e.g. hypoid gearbox) with a different mesh frequency can be selected.

No-load running torque (T_{012})

The no-load running torque T_{012} is the torque which must be applied to a gearbox in order to overcome the internal friction; it is therefore considered lost torque. The values specified in the catalog are calculated by WITTENSTEIN alpha at a speed of $n_1 = 3000$ rpm and an ambient temperature of $20\,^{\circ}\text{C}$.

$$T_{012}$$
: 0 1 \rightarrow 2 without from input side towards output side

Idling torques decrease during operation.

NSF

Lubricants certified as grade H1 by the NSF (National Sanitation Foundation) can be used in the food sector where occasional unavoidable contact with food cannot be excluded.

Operating modes

(continuous operation **S1** and cyclic operation **S5**)

Gearboxes are selected depending on whether the motion profile is characterized by frequent acceleration and deceleration phases in \rightarrow **cyclic operation** (S5) as well as pauses, or whether it is designed for \rightarrow **continuous operation** (S1), i.e. with long phases of constant motion.

Operating noise (L_{PA})

The gear ratio and speed affect the noise level. As a general rule: A higher speed means a higher noise level, while a higher ratio means a lower noise level. The values specified in our catalog are based on a reference ratio and speed. The reference speed is either n1= 3000 rpm or n1= 2000 rpm depending on the size of the gearbox. You can find ratio-specific values in cymex® – www.wittenstein-cymex.com.

Output shaft revolution (f.)

Factor f_a determines the number of life time cycles for the required gearbox service life. It describes the number of revolutions at the output used to assess the torque permitted at the output.

Glossary - the alphabet

Positioning accuracy

The positioning accuracy is determined by the angular deviation from a setpoint and equals the sum of the torsional angles due to load → (torsional rigidity and torsional backlash) and kinetics → (synchronization error) occurring simultaneously in practise.

Quality control

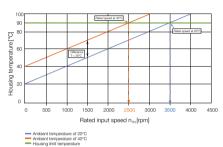
All Premium and Advanced gearboxes are subject to a final inspection before they leave the WITTENSTEIN alpha factory to ensure that they are all delivered within specification.

Ratio (i)

The gear ratio i indicates the factor by which the gearbox transforms the three relevant parameters of motion (speed, torque and mass moment of inertia). The factor is a result of the geometry of the gearing elements (Example: i = 10).

Safety note

For applications with special safety requirements (e.g. vertical axes, clamped drives), we recommend exclusive use of our Premium and Advanced products (excluding V-Drive).


SIZING ASSISTANT

The online SIZING ASSISTANT from WITTENSTEIN alpha allows the efficient selection of a gearbox in seconds. You can use various motor or application entry options to select the right gearbox for your application in seconds (www.sizing-assistant.com).

Speed (n)

Two speeds are of relevance when dimensioning a gearbox: the maximum speed and the thermal speed limit at the input. The maximum permissible speed n_{1Max} must not be exceeded because it serves as the basis for dimensioning \rightarrow cyclic operation. The nominal speed n_{1N} must not be exceeded in \rightarrow continuous operation. The thermal speed limit n_{1T} at an ambient temperature of 20° C, is determined by the maximum

gearbox temperature of $T=90^{\circ}$ C at no-load. As can be seen in the diagram below, the temperature limit is reached more quickly in the presence of an elevated outside temperature. In other words: the nominal input speed must be reduced if the ambient temperature is high. The values applicable to your gearbox are available from WITTENSTEIN alpha on request.

Delivery of speedline®

If necessary, you can receive delivery of standard series in 24 or 48 hours ex works. Outstanding flexibility for fast deliveries at short notice

Synchronization

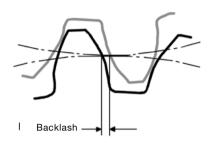
Synchronization refers to the measurable speed variation between the input and output during one revolution of the output shaft. It is caused by manufacturing tolerances and causes minute angular deviations and ratio fluctuations.

Technical data

You can download further technical data relating to the entire product portfolio from our website

Tilting rigidity

The tilting rigidity $C_{\rm 2K}$ [Nm/arcmin] of the gearbox consists of the bending stiffness of the output or pinion shaft and the stiffness of the output bearing. It is defined as the quotient of tilting moment ${\rm M_{2K}}$ [Nm] and tilting angle ${\bf \Phi}$ [arcmin]


$$(C_{2K} = M_{2K}/\Phi).$$

Tilting torque (M_{2K})

The tilting torque M_{2K} is a result of the \rightarrow **axial** and lateral forces applied and their respective points of application in relation to the inner radial bearing on the output side.

Torsional backlash (j,)

Torsional backlash $j_{\rm t}$ [arcmin] is the maximum angle of torsion of the output shaft in relation to the input. Simply put, the torsional backlash represents the gap between two tooth flanks.

Torsional backlash is measured with the input shaft locked.

The output is then loaded with a defined test torque in order to overcome the internal gearbox friction. The main factor affecting torsional backlash is the face clearance between the gear teeth. The low torsional backlash of WITTENSTEIN alpha gearboxes is due to their high manufacturing accuracy and the specific combination of gear wheels.

Torsional rigidity (C_{t21})

Torsional rigidity [Nm/arcmin] C_{t21} is defined as the quotient of applied torque and resulting torsion angle $(C_{t21} = \Delta T/\Delta \phi)$. It shows the torque required to turn the output shaft by one angular minute. The torsional rigidity can be determined from the \rightarrow hysteresis curve.

Torsional rigidity C, angle of torsion ϕ

Reduce all torsional rigidity values at the output:

$$C_{\text{(n),out}} = C_{\text{(n),in}} * i^2$$

with i = Gearbox ratio [-] $C_{(n)}$ = Individual rigidity values [Nm/arcmin]

Note: The torsional rigidity $C_{\rm t21}$ for the gearbox always relates to the output.

Series connection of torsional rigidity values

$$1/C_{\text{tot}} = 1/C_{1,\text{out}} + 1/C_{2,\text{out}} + ... + 1/C_{(n)}$$

Angle of torsion ϕ [arcmin]

$$\Phi$$
 = T_2 * 1/ C_{tot}
with T_2 = output torque [Nm]

Torque (M)

The torque is the actual driving force of a rotary motion. The force and lever arm combine to produce the torque that acts around the axis of rotation. $M = F \cdot I$

Torque (T_{2a}) T_{2a} represents the maximum torque transmitted by the gearbox. This value may decrease depending on the applicationspecific conditions and the precise evaluation of the movement profile.

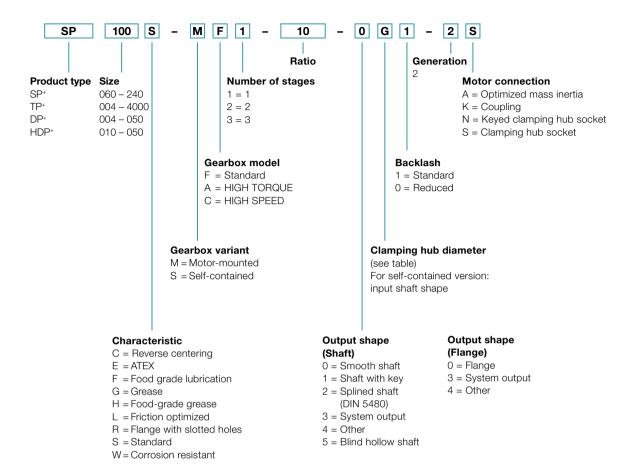
Glossary – Formulae

Formulae

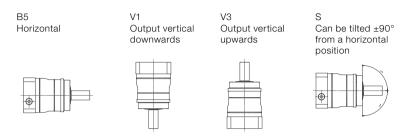
Torque [Nm]	$T = J \cdot \alpha$	$J = \text{Mass moment of inertia [kgm}^2]$ $\alpha = \text{Angular acceleration [1/s}^2]$
Torque [Nm]	T=F·I	F = Force [N] I = Lever, length [m]
Acceleration force [N]	$F_{\rm b} = m \cdot a$	m = Mass [kg] $a = \text{Linear acceleration [m/s}^2]$
Frictional force [N]	$F_{\text{Reib}} = m \cdot g \cdot \mu$	g = Acceleration due to gravity 9.81 m/s ² μ = Coefficient of friction
Angular speed [1/s]	$\omega = 2 \cdot \pi \cdot n / 60$	n = Speed [rpm] $\pi = \text{PI} = 3.14$
Linear speed [m/s]	$V = \omega \cdot r$	v = Linear speed [m/s]r = Radius [m]
Linear speed [m/s] (spindle)	$V_{\rm sp} = \omega \cdot h / (2 \cdot \pi)$	h = Screw pitch [m]
Linear acceleration [m/s²]	$a = v/t_b$	$t_{\rm h}$ = Acceleration time [s]
Angular acceleration [1/s²]	$\alpha = \omega / t_{\rm b}$	t _b – Acceletation time [5]
Pinion path [mm]	$s = m_{n} \cdot z \cdot \pi / \cos \beta$	m_n = Normal module [mm] z = Number of teeth [-] β = Helix angle [°]

Conversion table

1 mm	= 0.039 in
1 Nm	= 8.85 in.lb
1 kgcm²	= 8.85 x 10 ⁻⁴ in.lb.s ²
1 N	= 0.225 lb _f
1 kg	= 2.21 lb _m


Symbol

Symbol	Unit	Designation
С	Nm/arcmin	Stiffness
ED	%, min	Duty cycle
F	N	Force
$f_{\rm s}$	-	Load factor
$f_{\rm e}$	_	Factor for duty cycle
i	_	Ratio
j	arcmin	Backlash
J	kgm²	Mass moment of inertia
K1	Nm	Factor for bearing calculation
L	h	Service life
L _{PA}	dB(A)	Operating noise
m	kg	Mass
М	Nm	Torque
n	rpm	Speed
p	_	Exponent for bearing calculation
η	%	Efficiency
t	S	Time
Т	Nm	Torque
V	m/min	Linear speed
Z	1/h	Number of cycles


Index

Index	Designation			
Capital letter	Permissible values			
Small letter	Actual values			
1	Input			
2	Output			
A/a	Axial			
B/b	Acceleration			
С	Constant			
d	Deceleration			
е	Pause			
h	Hours			
K/k	Tilting			
m	Mean			
Max/max	Maximum			
Mot	Motor			
N	Nominal			
Not/not	Emergency stop			
0	No load			
Q/q	Lateral			
t	Torsional			
Т	Tangential			

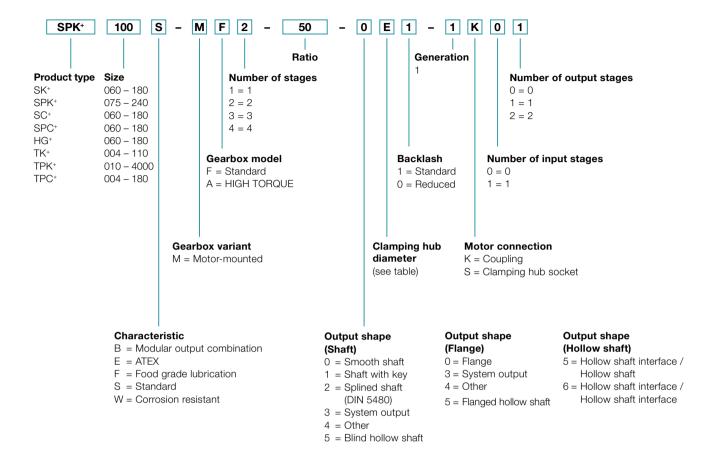
Ordering code - Planetary gearbox

Mounting positions and clamping hub diameters

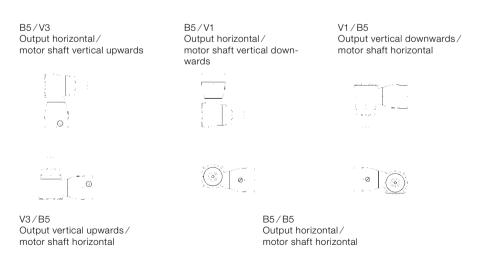
Clamping hub diameter (see technical data sheet for possible diameters)

Code letter	mm	Code letter	mm
В	11	I	32
С	14	К	38
E	19	М	48
G	24	N	55
Н	28	0	60

Intermediate sizes possible using bushings with a minimum thickness of 1 mm.


For information purposes only - not required when placing orders!

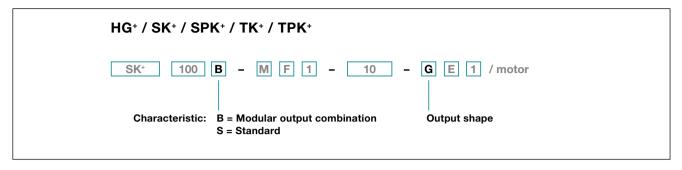
Exceptions


- The mounting position of TP+ 2000 / 4000 must be specified.
- DP+ / HDP+ products are designed for mounting position B5 as standard!

If the mounting position is different, contact WITTENSTEIN alpha without fail.

Ordering code - Hypoid- / Bevel gearboxes

Mounting positions

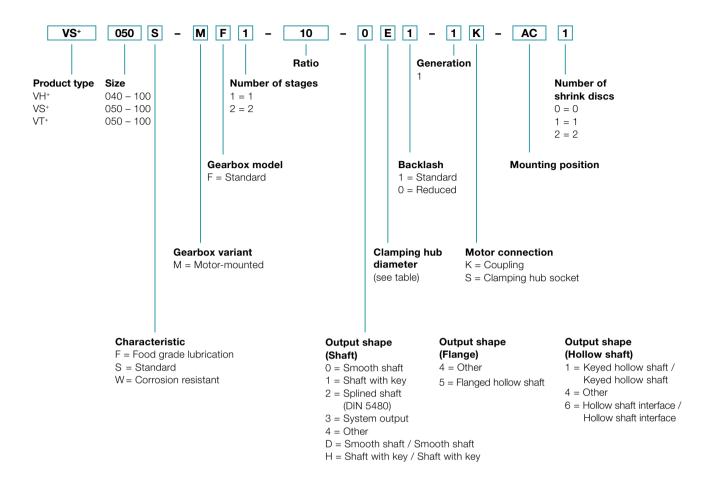


Please note the orientation when placing your order.

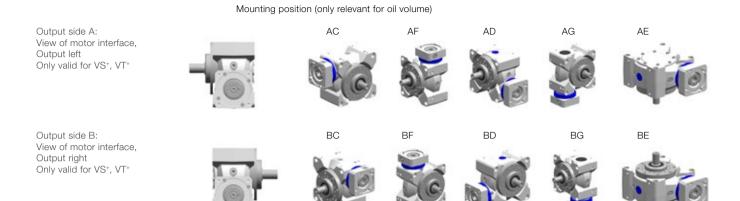
Exceptions:

- The mounting position of TPK+ 2000 / 4000 must be specified.
- If the mounting position is different, contact WITTENSTEIN alpha without fail.

Characteristic: Modular output combination (B)


When selecting an output combination from the modular system, please select the letter "B" as the characteristic in the ordering code. The digit for the required output shape is the modular matrix system.

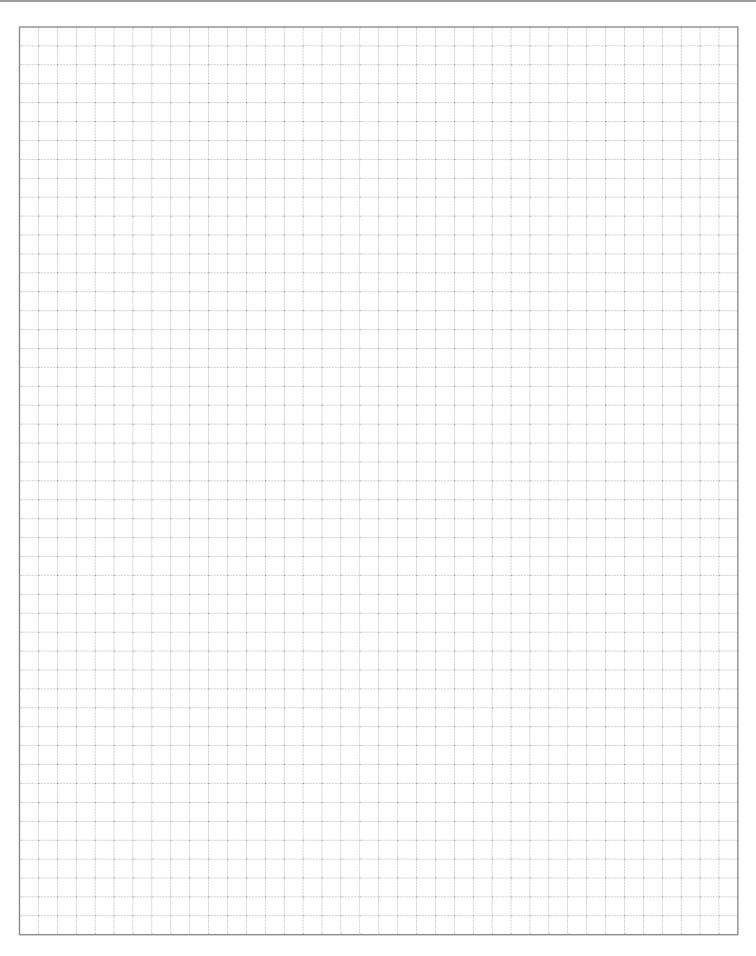
Example: If you opt for an SK+ with a smooth shaft and require an additional output in the form of a shaft with key, then select the letter "G" and enter in the order key under "Output shape".

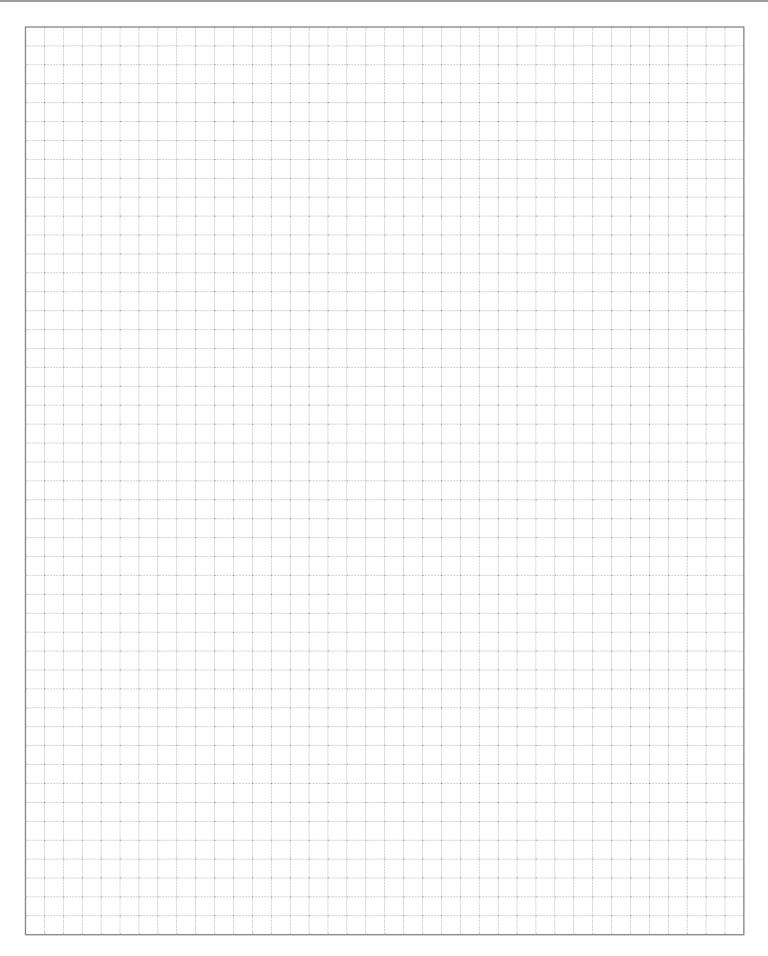

	Backward					
	Output shape					
	Front	Smooth shaft	Shaft with key	Hollow shaft interface	Hollow shaft	Cover
		D	G	A	-	0*
*	Smooth shaft					
SK+ / SPK+		E	н	В	-	1*
Š	Shaft with key					
		F	ı	С	-	2*
	Splined shaft (DIN 5480)					
SPK⁺	0	0	Р	N	-	5*
	Blind hollow shaft					
→	Flanged hollow shaft	D	G	6	5*	0
TPK	Flange	D	G	6	-	0*
Ω̈́		D	G	6*	5*	0
	Hollow shaft					

 $^{^{\}star}$ Standard version: please specify characteristic "S" in the order code

Ordering code - Worm gearboxes

Mounting positions and clamping hub diameters


For VH+ and VS+ with dual-shaft output or hollow shaft, A and B in the mounting position must be replaced with 0 (zero).


Clamping hub diameter

(see technical data sheet for possible diameters)

Code letter	mm		Code letter	mm
В	11		I	32
С	14		К	38
Е	19		М	48
G	24		N	55
Н	28		0	60

Intermediate diameters possible in combination with a bushing with a minimum thickness of 1 mm.

alpha

WITTENSTEIN alpha GmbH Walter-Wittenstein-Straße 1 97999 Igersheim Germany Tel. +49 7931 493-0 24h-Service-Hotline: Tel. +49 7931 493-12900 speedline®: Tel. +49 7931 493-10444 info@wittenstein-alpha.com

WITTENSTEIN alpha – Intelligent drive systems www.wittenstein-alpha.com

The entire world of drive technology – Catalogs available on request or online at www.wittenstein-alpha.com/catalogs

alpha Advanced Line. Maximum power density and outstanding positioning accuracy for complex applications.

alpha Basic / Value Line. Reliable, flexible and economical solutions for a wide range of applications.

alpha Linear Systems. Precise, dynamic system solutions for every requirement.

alpha Mechatronic Systems. Energy-efficient, versatile and flexible mechatronic drive systems.